• protein homodimerization activity • histone binding • chromatin binding • metal ion binding • ubiquitin-protein transferase activity • protein binding • ubiquitin protein ligase binding • transferase activity • identical protein binding • zinc ion binding • ubiquitin binding
Cellular component
• site of double-strand break • ubiquitin ligase complex • nucleoplasm • chromosome • chromosome, telomeric region • midbody • cell nucleus • cytosol • cytoplasm
Biological process
• response to ionizing radiation • histone H2A ubiquitination • interstrand cross-link repair • ubiquitin-dependent protein catabolic process • protein K63-linked ubiquitination • positive regulation of DNA repair • histone H2A K63-linked ubiquitination • negative regulation of transcription elongation from RNA polymerase II promoter • cellular response to DNA damage stimulus • cell division • protein K48-linked ubiquitination • isotype switching • protein ubiquitination • spermatid development • cell cycle • histone H2B ubiquitination • double-strand break repair via nonhomologous end joining • histone exchange • protein autoubiquitination • double-strand break repair • DNA repair • spermatogenesis, exchange of chromosomal proteins • chromatin organization
Sources:Amigo / QuickGO
Orthologs
Species
Human
Mouse
Entrez
9025
58230
Ensembl
ENSG00000112130
ENSMUSG00000090083
UniProt
O76064
Q8VC56
RefSeq (mRNA)
NM_003958 NM_183078
NM_021419
RefSeq (protein)
NP_003949 NP_898901
NP_067394
Location (UCSC)
Chr 6: 37.35 – 37.39 Mb
Chr 17: 29.61 – 29.64 Mb
PubMed search
[3]
[4]
Wikidata
View/Edit Human
View/Edit Mouse
E3 ubiquitin-protein ligase RNF8 is an enzyme that in humans is encoded by the RNF8 gene.[5][6][7] RNF8 has activity both in immune system functions[8] and in DNA repair.
Contents
1Function
2Chromatin remodeling
3RNF8 in Homologous Recombinational Repair
4RNF8 in Non-Homologous End Joining
5RNF8 in Nucleotide Excision Repair
6Impaired spermatogenesis
7Interactions
8See also
9References
10Further reading
11External links
Function
The protein encoded by this gene contains a RING finger motif and an FHA domain. This protein has been shown to interact with several class II ubiquitin-conjugating enzymes (E2), including UBE2E1/UBCH6, UBE2E2, and UBE2E3, and may act as a ubiquitin ligase (E3) in the ubiquitination of certain nuclear proteins. Alternatively spliced transcript variants encoding distinct isoforms have been reported.[7]
RNF8 promotes repair of DNA damage through three DNA repair pathways: homologous recombinational repair (HRR),[9]non-homologous end joining (NHEJ),[10][11] and nucleotide excision repair (NER).[10] DNA damage is considered to be the primary cause of cancer, and deficiency in DNA repair can cause mutations leading to cancer.[12][13] A deficiency in RNF8 predisposes mice to cancer.[14][15]
Chromatin remodeling
After the occurrence of a double-strand break in DNA, the chromatin needs to be relaxed to allow DNA repair, either by HRR or by NHEJ. There are two pathways that result in chromatin relaxation, one initiated by PARP1 and one initiated by γH2AX (the phosphorylated form of the H2AX protein) (see Chromatin remodeling). Chromatin remodeling initiated by γH2AX depends on RNF8, as described below.
The histone variant H2AX constitutes about 10% of the H2A histones in human chromatin.[16] At the site of a DNA double-strand break, the extent of chromatin with phosphorylated γH2AX is about two million base pairs.[16]
γH2AX does not, by itself, cause chromatin decondensation, but within seconds of irradiation the protein “Mediator of the DNA damage checkpoint 1” (MDC1) specifically attaches to γH2AX.[17][18] This is accompanied by simultaneous accumulation of RNF8 protein and the DNA repair protein NBS1 which bind to MDC1.[19] RNF8 mediates extensive chromatin decondensation through its subsequent interaction with CHD4 protein,[20] a component of the nucleosome remodeling and deacetylase complex NuRD.
RNF8 in Homologous Recombinational Repair
DNA end resection is a pivotal step in HRR repair that produces 3’ overhangs that provide a platform to recruit proteins involved in HRR repair. The MRN complex, consisting of Mre11, Rad50 and NBS1, carries out the initial steps of this end resection.[21] RNF8 ubiquitinates NBS1 (both before and after DNA damage occurs), and this ubiquitination is required for effective homologous recombinational repair.[9] Ubiquitination of NBS1 by RNF8 is, however, not required for the role of NBS1 in another DNA repair process, the error-prone microhomology-mediated end joining DNA repair.[9]
RNF8 appears to have other roles in HRR as well. RNF8, acting as a ubiquitin ligase, mono-ubiquitinates γH2AX to tether DNA repair molecules at DNA lesions.[22] In particular, RNF8 activity is required to recruit BRCA1 for homologous recombination repair.[23]
RNF8 in Non-Homologous End Joining
Ku protein is a dimeric protein complex, a heterodimer of two polypeptides, Ku70 and Ku80. Ku protein forms a ring structure. An early step in non-homologous end joining DNA repair of a double-strand break is the slipping of a Ku protein (with its ring protein structure) over each end of the broken DNA. The two Ku proteins, one on each broken end, bind to each other and form a bridge.[24][25] This protects the DNA ends and forms a platform for further DNA repair enzymes to operate. After the broken ends are rejoined, the two Ku proteins still encircle the now intact DNA and can no longer slip off an end. The Ku proteins must be removed or they cause loss of cell viability.[26] The removal of Ku protein is performed either by RNF8 ubiquitination of Ku80, allowing it to be released from the Ku protein ring,[27] or else by NEDD8 promoted ubiquitination of Ku protein, causing its release from DNA.[26]
RNF8 in Nucleotide Excision Repair
UV-induced formation of pyrimidine dimers in DNA can lead to cell death unless the lesions are repaired. Most repair of these lesions is by nucleotide excision repair.[28] After UV-irradiation, RNF8 is recruited to sites of UV-induced DNA damage and ubiquitinates chromatin component histone H2A. These responses provide partial protection against UV irradiation.[10][29]
Impaired spermatogenesis
Spermatogenesis is the process in which spermatozoa are produced from spermatogonial stem cells by way of mitosis and meiosis. A major function of meiosis is homologous recombinational repair of this germline DNA.[30] RNF8 plays an essential role in signaling the presence of DNA double-strand breaks. Male mice with a gene knockout for RNF8 have impaired spermatogenesis, apparently due to a defect in homologous recombinational repair.[14]
Interactions
RNF8 has been shown to interact with Retinoid X receptor alpha.[31]
See also
RING finger domain
References
^ abcGRCh38: Ensembl release 89: ENSG00000112130 - Ensembl, May 2017
^ abcGRCm38: Ensembl release 89: ENSMUSG00000090083 - Ensembl, May 2017
^Ishikawa K, Nagase T, Suyama M, Miyajima N, Tanaka A, Kotani H, Nomura N, Ohara O (Jun 1998). "Prediction of the coding sequences of unidentified human genes. X. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro". DNA Research. 5 (3): 169–76. doi:10.1093/dnares/5.3.169. PMID 9734811.
^Seki N, Hattori A, Sugano S, Suzuki Y, Nakagawara A, Ohhira M, Muramatsu M, Hori T, Saito T (Jan 1999). "Isolation, tissue expression, and chromosomal assignment of a novel human gene which encodes a protein with RING finger motif". Journal of Human Genetics. 43 (4): 272–4. doi:10.1007/s100380050088. PMID 9852682.
^ ab"Entrez Gene: RNF8 ring finger protein 8".
^Ramachandran S, Chahwan R, Nepal RM, Frieder D, Panier S, Roa S, Zaheen A, Durocher D, Scharff MD, Martin A (2010). "The RNF8/RNF168 ubiquitin ligase cascade facilitates class switch recombination". Proc. Natl. Acad. Sci. U.S.A. 107 (2): 809–14. doi:10.1073/pnas.0913790107. PMC 2818930. PMID 20080757.
^ abcLu CS, Truong LN, Aslanian A, Shi LZ, Li Y, Hwang PY, Koh KH, Hunter T, Yates JR, Berns MW, Wu X (2012). "The RING finger protein RNF8 ubiquitinates Nbs1 to promote DNA double-strand break repair by homologous recombination". J. Biol. Chem. 287 (52): 43984–94. doi:10.1074/jbc.M112.421545. PMC 3527981. PMID 23115235.
^ abcMarteijn JA, Bekker-Jensen S, Mailand N, Lans H, Schwertman P, Gourdin AM, Dantuma NP, Lukas J, Vermeulen W (2009). "Nucleotide excision repair-induced H2A ubiquitination is dependent on MDC1 and RNF8 and reveals a universal DNA damage response". J. Cell Biol. 186 (6): 835–47. doi:10.1083/jcb.200902150. PMC 2753161. PMID 19797077.
^Bernstein C, Prasad AR, Nfonsam V, Bernstein H. (2013). DNA Damage, DNA Repair and Cancer, New Research Directions in DNA Repair, Prof. Clark Chen (Ed.),
ISBN 978-953-51-1114-6, InTech, http://www.intechopen.com/books/new-research-directions-in-dna-repair/dna-damage-dna-repair-and-cancer
^Kastan MB (April 2008). "DNA damage responses: mechanisms and roles in human disease: 2007 G.H.A. Clowes Memorial Award Lecture". Molecular Cancer Research. 6 (4): 517–24. doi:10.1158/1541-7786.MCR-08-0020. PMID 18403632.
^ abLi L, Halaby MJ, Hakem A, Cardoso R, El Ghamrasni S, Harding S, Chan N, Bristow R, Sanchez O, Durocher D, Hakem R (2010). "Rnf8 deficiency impairs class switch recombination, spermatogenesis, and genomic integrity and predisposes for cancer". J. Exp. Med. 207 (5): 983–97. doi:10.1084/jem.20092437. PMC 2867283. PMID 20385750.
^Halaby MJ, Hakem A, Li L, El Ghamrasni S, Venkatesan S, Hande PM, Sanchez O, Hakem R (2013). "Synergistic interaction of Rnf8 and p53 in the protection against genomic instability and tumorigenesis". PLoS Genet. 9 (1): e1003259. doi:10.1371/journal.pgen.1003259. PMC 3561120. PMID 23382699.
^Mailand N, Bekker-Jensen S, Faustrup H, Melander F, Bartek J, Lukas C, Lukas J (2007). "RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins". Cell. 131 (5): 887–900. doi:10.1016/j.cell.2007.09.040. PMID 18001824.
^Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ, Jackson SP (2005). "MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks". Cell. 123 (7): 1213–26. doi:10.1016/j.cell.2005.09.038. PMID 16377563.
^Chapman JR, Jackson SP (2008). "Phospho-dependent interactions between NBS1 and MDC1 mediate chromatin retention of the MRN complex at sites of DNA damage". EMBO Rep. 9 (8): 795–801. doi:10.1038/embor.2008.103. PMC 2442910. PMID 18583988.
^Luijsterburg MS, Acs K, Ackermann L, Wiegant WW, Bekker-Jensen S, Larsen DH, Khanna KK, van Attikum H, Mailand N, Dantuma NP (2012). "A new non-catalytic role for ubiquitin ligase RNF8 in unfolding higher-order chromatin structure". EMBO J. 31 (11): 2511–27. doi:10.1038/emboj.2012.104. PMC 3365417. PMID 22531782.
^Yamamoto T, Taira Nihira N, Yogosawa S, Aoki K, Takeda H, Sawasaki T, Yoshida K (2017). "Interaction between RNF8 and DYRK2 is required for the recruitment of DNA repair molecules to DNA double-strand breaks". FEBS Lett. 591 (6): 842–853. doi:10.1002/1873-3468.12596. PMID 28194753.
^Hodge CD, Ismail IH, Edwards RA, Hura GL, Xiao AT, Tainer JA, Hendzel MJ, Glover JN (2016). "RNF8 E3 Ubiquitin Ligase Stimulates Ubc13 E2 Conjugating Activity That Is Essential for DNA Double Strand Break Signaling and BRCA1 Tumor Suppressor Recruitment". J. Biol. Chem. 291 (18): 9396–410. doi:10.1074/jbc.M116.715698. PMC 4850281. PMID 26903517.
^Jones JM, Gellert M, Yang W (2001). "A Ku bridge over broken DNA". Structure. 9 (10): 881–4. doi:10.1016/s0969-2126(01)00658-x. PMID 11591342.
^Rulten SL, Grundy GJ (2017). "Non-homologous end joining: Common interaction sites and exchange of multiple factors in the DNA repair process". BioEssays. 39 (3): 1600209. doi:10.1002/bies.201600209. PMID 28133776.
^ abBrown JS, Lukashchuk N, Sczaniecka-Clift M, Britton S, le Sage C, Calsou P, Beli P, Galanty Y, Jackson SP (2015). "Neddylation promotes ubiquitylation and release of Ku from DNA-damage sites". Cell Rep. 11 (5): 704–14. doi:10.1016/j.celrep.2015.03.058. PMC 4431666. PMID 25921528.
^Postow L, Ghenoiu C, Woo EM, Krutchinsky AN, Chait BT, Funabiki H (2008). "Ku80 removal from DNA through double strand break-induced ubiquitylation". J. Cell Biol. 182 (3): 467–79. doi:10.1083/jcb.200802146. PMC 2500133. PMID 18678709.
^Douki T, von Koschembahr A, Cadet J (2017). "Insight in DNA Repair of UV-induced Pyrimidine Dimers by Chromatographic Methods". Photochem. Photobiol. 93 (1): 207–215. doi:10.1111/php.12685. PMID 27935042.
^Sakasai R, Tibbetts R (2008). "RNF8-dependent and RNF8-independent regulation of 53BP1 in response to DNA damage". J. Biol. Chem. 283 (20): 13549–55. doi:10.1074/jbc.M710197200. PMID 18337245.
^Harris Bernstein, Carol Bernstein and Richard E. Michod (2011). Meiosis as an Evolutionary Adaptation for DNA Repair, DNA Repair, Dr. Inna Kruman (Ed.), InTech, DOI: 10.5772/25117. Available from: https://www.intechopen.com/books/dna-repair/meiosis-as-an-evolutionary-adaptation-for-dna-repair
^Takano Y, Adachi S, Okuno M, Muto Y, Yoshioka T, Matsushima-Nishiwaki R, Tsurumi H, Ito K, Friedman SL, Moriwaki H, Kojima S, Okano Y (Apr 2004). "The RING finger protein, RNF8, interacts with retinoid X receptor alpha and enhances its transcription-stimulating activity". The Journal of Biological Chemistry. 279 (18): 18926–34. doi:10.1074/jbc.M309148200. PMID 14981089.
Maruyama K, Sugano S (Jan 1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene. 138 (1–2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID 8125298.
Bonaldo MF, Lennon G, Soares MB (Sep 1996). "Normalization and subtraction: two approaches to facilitate gene discovery". Genome Research. 6 (9): 791–806. doi:10.1101/gr.6.9.791. PMID 8889548.
Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S (Oct 1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene. 200 (1–2): 149–56. doi:10.1016/S0378-1119(97)00411-3. PMID 9373149.
Ito K, Adachi S, Iwakami R, Yasuda H, Muto Y, Seki N, Okano Y (May 2001). "N-Terminally extended human ubiquitin-conjugating enzymes (E2s) mediate the ubiquitination of RING-finger proteins, ARA54 and RNF8". European Journal of Biochemistry / FEBS. 268 (9): 2725–32. doi:10.1046/j.1432-1327.2001.02169.x. PMID 11322894.
Takano Y, Adachi S, Okuno M, Muto Y, Yoshioka T, Matsushima-Nishiwaki R, Tsurumi H, Ito K, Friedman SL, Moriwaki H, Kojima S, Okano Y (Apr 2004). "The RING finger protein, RNF8, interacts with retinoid X receptor alpha and enhances its transcription-stimulating activity". The Journal of Biological Chemistry. 279 (18): 18926–34. doi:10.1074/jbc.M309148200. PMID 14981089.
Lehner B, Sanderson CM (Jul 2004). "A protein interaction framework for human mRNA degradation". Genome Research. 14 (7): 1315–23. doi:10.1101/gr.2122004. PMC 442147. PMID 15231747.
Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (Oct 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–8. doi:10.1038/nature04209. PMID 16189514.
Kolas NK, Chapman JR, Nakada S, Ylanko J, Chahwan R, Sweeney FD, Panier S, Mendez M, Wildenhain J, Thomson TM, Pelletier L, Jackson SP, Durocher D (Dec 2007). "Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase". Science. 318 (5856): 1637–40. doi:10.1126/science.1150034. PMC 2430610. PMID 18006705.
‹ The template below (PDB Gallery) is being considered for deletion. See templates for discussion to help reach a consensus. ›
v
t
e
PDB gallery
2csw: Solution structure of the FHA domain of human ubiquitin ligase protein RNF8
External links
RNF8+protein,+human at the US National Library of Medicine Medical Subject Headings (MeSH)
This article is about the letter of the alphabet. For other uses, see Y (disambiguation). See also: Wye (disambiguation) Y Y y (See below) Usage Writing system Latin script Type Alphabetic and Logographic Language of origin Latin language Phonetic usage [ y ] [ ɨ ] [ j ] [ iː ] [ ɪ ] [ ɘ ] [ ə ] [ ɯ ] [ ɛː ] [ j ] [ ɥ ] [ ɣ̟ ] / w aɪ / / aɪ / Unicode value U+0059, U+0079 Alphabetical position 25 History Development Υ υ 𐌖 Y y Time period 54 to present Descendants • U • V • W • Ỿ • ¥ • Ꮙ • Ꮍ • Ꭹ Sisters F Ѵ У Ў Ұ Ү ו و ܘ וּ וֹ ࠅ 𐎆 𐡅 ወ વ ૂ ુ उ Variations (See below) Other Other letters commonly used with y(x), ly, ny This article contains IPA phonetic symbols. Without proper rendering support, you may see question marks, boxes, or other symbols instead of Unicode characters. For an introductory guide on IPA symbols, see Help:IPA. ISO basic Latin alphabet Aa Bb Cc D
Mount Tamalpais Mount Tamalpais, viewed from the south Highest point Elevation 2,571 ft (784 m) NAVD 88 [1] Prominence 2,456 ft (749 m) [1] Listing California county high points 55th Coordinates 37°55′45″N 122°34′40″W / 37.929088°N 122.577829°W / 37.929088; -122.577829 Coordinates: 37°55′45″N 122°34′40″W / 37.929088°N 122.577829°W / 37.929088; -122.577829 [1] Geography Mount Tamalpais Marin County, California, U.S. Show map of California Mount Tamalpais Mount Tamalpais (the US) Show map of the US Parent range California Coast Ranges Topo map USGS San Rafael Geology Mountain type Sedimentary Climbing First ascent 1830s by Jacob P. Leese (first recorded ascent) [2] Easiest route Railroad Grade fire trail Mount Tamalpais ( / t æ m əl ˈ p aɪ . ɪ s / ; TAM -əl- PY -iss ; Coast Miwok: /t̪ɑmɑlˈpɑis̺/ , known locally as Mount Tam ) is a peak in Marin County, California, United State
Indian Forest Service Service Overview Preceding service Imperial Forest Service (1864 to 1935) Year of Constitution 1966 Country India Staff College Indira Gandhi National Forest Academy (IGNFA), Dehradun, Uttarakhand Cadre Controlling Authority Ministry of Environment, Forests and Climate Change Legal personality Governmental: Government service General nature Administration of Forest and Wildlife resources Cadre strength 3131 (2182 Direct Recruits and 949 Promotion Posts) Website ifs.nic.in Service Chief Director General of Forests Siddhanth Das, IFS (1982 Batch, Odisha Cadre) [1] Head of the All India Civil Services Cabinet Secretary Pradeep Kumar Sinha, IAS Indian Forest Service (भारतीय वन सेवा) [2] is one of the three All India Services of the Government of India. The other two All India Services being the Indian Administrative Service (IAS) and the Indian Police Service (IPS). [3] [4] [5] It was constituted in