RAD18































































RAD18







Available structures
PDB Ortholog search: PDBe RCSB



Identifiers
Aliases
RAD18, RNF73, E3 ubiquitin protein ligase, RAD18 E3 ubiquitin protein ligase
External IDs MGI: 1890476 HomoloGene: 48572 GeneCards: RAD18


















Gene location (Human)
Chromosome 3 (human)
Chr. Chromosome 3 (human)[1]

Chromosome 3 (human)
Genomic location for RAD18

Genomic location for RAD18

Band 3p25.3 Start 8,775,402 bp[1]
End 8,963,773 bp[1]

































Orthologs
Species Human Mouse
Entrez





Ensembl





UniProt





RefSeq (mRNA)


NM_020165




NM_001167730
NM_021385

RefSeq (protein)


NP_064550




NP_001161202
NP_067360

Location (UCSC) Chr 3: 8.78 – 8.96 Mb Chr 6: 112.62 – 112.7 Mb

PubMed search
[3] [4]
Wikidata



View/Edit Human View/Edit Mouse

E3 ubiquitin-protein ligase RAD18 is an enzyme that in humans is encoded by the RAD18 gene.[5][6][7]




Contents






  • 1 Function


  • 2 Animal models


  • 3 Interactions


  • 4 References


  • 5 Further reading





Function


The protein encoded by this ne is highly similar to S. cerevisiae DNA damage repair protein Rad18. Yeast Rad18 functions through interaction with Rad6, which is a ubiquitin-conjugating enzyme required for post-replication repair of damaged DNA. Similar to its yeast counterpart, this protein is able to interact with the human homolog of yeast Rad6 protein through a conserved ring finger motif. Mutation of this motif results in defective replication of UV-damaged DNA and hypersensitivity to multiple mutagens.[7]



Animal models


Model organisms have been used in the study of RAD18 function. A conditional knockout mouse line, called Rad18tm1a(EUCOMM)Wtsi,[8] was generated as part of the EUCOMM program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists — at the Wellcome Trust Sanger Institute.[9][10][11][12][13] Mice lacking Rad18 had no significant defects in viability or fertility,[14][15] therefore male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[10][16][17]
















































































































Twenty five tests were carried out and four significant phenotypes were reported:[17]




  • Mutant male mice had a decreased body weight compared to wildtype control mice.

  • Mutant male mice showed increased activity, VO2 and energy expenditure, determined by indirect calorimetry.


  • Dual-energy X-ray absorptiometry (DEXA) showed mutant male mice had a decrease in fat mass.

  • A micronucleus test found a potential increase in DNA damage in mutant mice.


A knockout in a human colorectal cancer cell line, HCT116, has also been created.[25]



Interactions


RAD18 has been shown to interact with HLTF,[26]UBE2B[5][6] and UBE2A.[5][6]




References





  1. ^ abc GRCh38: Ensembl release 89: ENSG00000070950 - Ensembl, May 2017


  2. ^ abc GRCm38: Ensembl release 89: ENSMUSG00000030254 - Ensembl, May 2017


  3. ^ "Human PubMed Reference:"..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  4. ^ "Mouse PubMed Reference:".


  5. ^ abc Tateishi S, Sakuraba Y, Masuyama S, Inoue H, Yamaizumi M (July 2000). "Dysfunction of human Rad18 results in defective postreplication repair and hypersensitivity to multiple mutagens". Proceedings of the National Academy of Sciences of the United States of America. 97 (14): 7927–32. doi:10.1073/pnas.97.14.7927. PMC 16647. PMID 10884424.


  6. ^ abc Xin H, Lin W, Sumanasekera W, Zhang Y, Wu X, Wang Z (July 2000). "The human RAD18 gene product interacts with HHR6A and HHR6B". Nucleic Acids Research. 28 (14): 2847–54. doi:10.1093/nar/28.14.2847. PMC 102657. PMID 10908344.


  7. ^ ab "Entrez Gene: RAD18 RAD18 homolog (S. cerevisiae)".


  8. ^ EUCOMM. "Rad18tm1a(EUCOMM)Wtsi". www.knockoutmouse.org.


  9. ^ Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (June 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.


  10. ^ ab van der Weyden L, White JK, Adams DJ, Logan DW (June 2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biology. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353.


  11. ^ Dolgin E (June 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.


  12. ^ Collins FS, Rossant J, Wurst W (January 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.


  13. ^ Auwerx J, Avner P, Baldock R, Ballabio A, Balling R, Barbacid M, Berns A, Bradley A, Brown S, Carmeliet P, Chambon P, Cox R, Davidson D, Davies K, Duboule D, Forejt J, Granucci F, Hastie N, de Angelis MH, Jackson I, Kioussis D, Kollias G, Lathrop M, Lendahl U, Malumbres M, von Melchner H, Müller W, Partanen J, Ricciardi-Castagnoli P, Rigby P, Rosen B, Rosenthal N, Skarnes B, Stewart AF, Thornton J, Tocchini-Valentini G, Wagner E, Wahli W, Wurst W (September 2004). "The European dimension for the mouse genome mutagenesis program". Nature Genetics. 36 (9): 925–7. doi:10.1038/ng0904-925. PMC 2716028. PMID 15340424.


  14. ^ Wellcome Trust Sanger Institute. "Viability at Weaning Data for Rad18". Mouse Resources Portal. www.sanger.ac.uk.


  15. ^ Wellcome Trust Sanger Institute. "Fertility Data for Rad18". Mouse Resources Portal. www.sanger.ac.uk.


  16. ^ ab Gerdin, AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x.


  17. ^ ab Wellcome Trust Sanger Institute. "MGP Phenotyping of Rad18tm1a(EUCOMM)Wtsi". Mouse Resources Portal. www.sanger.ac.uk.


  18. ^ "Body weight data for Rad18". Wellcome Trust Sanger Institute.


  19. ^ "Dysmorphology data for Rad18". Wellcome Trust Sanger Institute.


  20. ^ "Indirect calorimetry data for Rad18". Wellcome Trust Sanger Institute.


  21. ^ "DEXA data for Rad18". Wellcome Trust Sanger Institute.


  22. ^ "Salmonella infection data for Rad18". Wellcome Trust Sanger Institute.


  23. ^ "Citrobacter infection data for Rad18". Wellcome Trust Sanger Institute.


  24. ^ Mouse Resources Portal, Wellcome Trust Sanger Institute.


  25. ^ Shiomi N, Mori M, Tsuji H, Imai T, Inoue H, Tateishi S, Yamaizumi M, Shiomi T (2007-01-01). "Human RAD18 is involved in S phase-specific single-strand break repair without PCNA monoubiquitination". Nucleic Acids Research. 35 (2): e9. doi:10.1093/nar/gkl979. PMID 17158148.


  26. ^ Unk I, Hajdú I, Fátyol K, Hurwitz J, Yoon JH, Prakash L, Prakash S, Haracska L (March 2008). "Human HLTF functions as a ubiquitin ligase for proliferating cell nuclear antigen polyubiquitination". Proceedings of the National Academy of Sciences of the United States of America. 105 (10): 3768–73. doi:10.1073/pnas.0800563105. PMC 2268824. PMID 18316726.




Further reading


.mw-parser-output .refbegin{font-size:90%;margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{list-style-type:none;margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li,.mw-parser-output .refbegin-hanging-indents>dl>dd{margin-left:0;padding-left:3.2em;text-indent:-3.2em;list-style:none}.mw-parser-output .refbegin-100{font-size:100%}



  • Maruyama K, Sugano S (January 1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene. 138 (1–2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID 8125298.


  • Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S (October 1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene. 200 (1–2): 149–56. doi:10.1016/S0378-1119(97)00411-3. PMID 9373149.


  • Mulder LC, Chakrabarti LA, Muesing MA (July 2002). "Interaction of HIV-1 integrase with DNA repair protein hRad18". The Journal of Biological Chemistry. 277 (30): 27489–93. doi:10.1074/jbc.M203061200. PMID 12016221.


  • Nikiforov AA, Sasina LK, Svetlova MP, Solovjeva LV, Oei SL, Bradbury EM, Tomilin NV (2004). "Early immobilization of nuclease FEN1 and accumulation of hRAD18 protein at stalled DNA replication forks in mammalian cells". Doklady Biochemistry and Biophysics. 389: 122–5. doi:10.1023/A:1023696425171. PMID 12856420.


  • Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villén J, Li J, Cohn MA, Cantley LC, Gygi SP (August 2004). "Large-scale characterization of HeLa cell nuclear phosphoproteins". Proceedings of the National Academy of Sciences of the United States of America. 101 (33): 12130–5. doi:10.1073/pnas.0404720101. PMC 514446. PMID 15302935.


  • Watanabe K, Tateishi S, Kawasuji M, Tsurimoto T, Inoue H, Yamaizumi M (October 2004). "Rad18 guides poleta to replication stalling sites through physical interaction and PCNA monoubiquitination". The EMBO Journal. 23 (19): 3886–96. doi:10.1038/sj.emboj.7600383. PMC 522788. PMID 15359278.


  • Nikiforov A, Svetlova M, Solovjeva L, Sasina L, Siino J, Nazarov I, Bradbury M, Tomilin N (October 2004). "DNA damage-induced accumulation of Rad18 protein at stalled replication forks in mammalian cells involves upstream protein phosphorylation". Biochemical and Biophysical Research Communications. 323 (3): 831–7. doi:10.1016/j.bbrc.2004.08.165. PMID 15381075.


  • Miyase S, Tateishi S, Watanabe K, Tomita K, Suzuki K, Inoue H, Yamaizumi M (January 2005). "Differential regulation of Rad18 through Rad6-dependent mono- and polyubiquitination". The Journal of Biological Chemistry. 280 (1): 515–24. doi:10.1074/jbc.M409219200. PMID 15509568.


  • Masuyama S, Tateishi S, Yomogida K, Nishimune Y, Suzuki K, Sakuraba Y, Inoue H, Ogawa M, Yamaizumi M (August 2005). "Regulated expression and dynamic changes in subnuclear localization of mammalian Rad18 under normal and genotoxic conditions". Genes to Cells. 10 (8): 753–62. doi:10.1111/j.1365-2443.2005.00874.x. PMID 16098139.


  • Nousiainen M, Silljé HH, Sauer G, Nigg EA, Körner R (April 2006). "Phosphoproteome analysis of the human mitotic spindle". Proceedings of the National Academy of Sciences of the United States of America. 103 (14): 5391–6. doi:10.1073/pnas.0507066103. PMC 1459365. PMID 16565220.


  • Bi X, Barkley LR, Slater DM, Tateishi S, Yamaizumi M, Ohmori H, Vaziri C (May 2006). "Rad18 regulates DNA polymerase kappa and is required for recovery from S-phase checkpoint-mediated arrest". Molecular and Cellular Biology. 26 (9): 3527–40. doi:10.1128/MCB.26.9.3527-3540.2006. PMC 1447421. PMID 16611994.


  • Lloyd AG, Tateishi S, Bieniasz PD, Muesing MA, Yamaizumi M, Mulder LC (May 2006). "Effect of DNA repair protein Rad18 on viral infection". PLoS Pathogens. 2 (5): e40. doi:10.1371/journal.ppat.0020040. PMC 1463017. PMID 16710452.


  • Yuasa MS, Masutani C, Hirano A, Cohn MA, Yamaizumi M, Nakatani Y, Hanaoka F (July 2006). "A human DNA polymerase eta complex containing Rad18, Rad6 and Rev1; proteomic analysis and targeting of the complex to the chromatin-bound fraction of cells undergoing replication fork arrest". Genes to Cells. 11 (7): 731–44. doi:10.1111/j.1365-2443.2006.00974.x. PMID 16824193.


  • Beausoleil SA, Villén J, Gerber SA, Rush J, Gygi SP (October 2006). "A probability-based approach for high-throughput protein phosphorylation analysis and site localization". Nature Biotechnology. 24 (10): 1285–92. doi:10.1038/nbt1240. PMID 16964243.


  • Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (November 2006). "Global, in vivo, and site-specific phosphorylation dynamics in signaling networks". Cell. 127 (3): 635–48. doi:10.1016/j.cell.2006.09.026. PMID 17081983.









Popular posts from this blog

Y

Mount Tamalpais

Indian Forest Service