梅林变换








在数学中,梅林变换是一种以幂函数为核的积分变换。定义式如下:


{Mf}(s)=φ(s)=∫0∞xs−1f(x)dx.{displaystyle left{{mathcal {M}}fright}(s)=varphi (s)=int _{0}^{infty }x^{s-1}f(x)dx.}{displaystyle left{{mathcal {M}}fright}(s)=varphi (s)=int _{0}^{infty }x^{s-1}f(x)dx.}

而其逆变换为


{M−}(x)=f(x)=12πi∫c−i∞c+i∞x−(s)ds.{displaystyle left{{mathcal {M}}^{-1}varphi right}(x)=f(x)={frac {1}{2pi i}}int _{c-iinfty }^{c+iinfty }x^{-s}varphi (s),ds.}{displaystyle left{{mathcal {M}}^{-1}varphi right}(x)=f(x)={frac {1}{2pi i}}int _{c-iinfty }^{c+iinfty }x^{-s}varphi (s),ds.}

梅林变换有许多应用,例如可以证明黎曼ζ函数的函数方程。




目录






  • 1 與其他變換之關係


    • 1.1 雙邊拉普拉斯變換


    • 1.2 傅立葉變換




  • 2 範例


    • 2.1 Cahen–Mellin 積分


    • 2.2 數論




  • 3 圓柱坐標系下的拉普拉斯算子


  • 4 参考文献





與其他變換之關係



雙邊拉普拉斯變換


雙邊拉普拉斯變換可以用梅林變換來表示,如下式


{Bf}(s)={Mf(−ln⁡x)}(s){displaystyle left{{mathcal {B}}fright}(s)=left{{mathcal {M}}f(-ln x)right}(s)}{displaystyle left{{mathcal {B}}fright}(s)=left{{mathcal {M}}f(-ln x)right}(s)}

梅林變換也可以用雙邊拉普拉斯變換來表示,如下式


{Mf}(s)={Bf(e−x)}(s){displaystyle left{{mathcal {M}}fright}(s)=left{{mathcal {B}}f(e^{-x})right}(s)}{displaystyle left{{mathcal {M}}fright}(s)=left{{mathcal {B}}f(e^{-x})right}(s)}


傅立葉變換


傅立葉變換可以用梅林變換來表示,如下式


{Ff}(−s)={Bf}(−is)={Mf(−ln⁡x)}(−is) {displaystyle left{{mathcal {F}}fright}(-s)=left{{mathcal {B}}fright}(-is)=left{{mathcal {M}}f(-ln x)right}(-is) }{displaystyle left{{mathcal {F}}fright}(-s)=left{{mathcal {B}}fright}(-is)=left{{mathcal {M}}f(-ln x)right}(-is) }

梅林變換變換也可以用傅立葉來表示,如下式


{Mf}(s)={Bf(e−x)}(s)={Ff(e−x)}(−is) {displaystyle left{{mathcal {M}}fright}(s)=left{{mathcal {B}}f(e^{-x})right}(s)=left{{mathcal {F}}f(e^{-x})right}(-is) }{displaystyle left{{mathcal {M}}fright}(s)=left{{mathcal {B}}f(e^{-x})right}(s)=left{{mathcal {F}}f(e^{-x})right}(-is) }


範例



Cahen–Mellin 積分


對於 c>0{displaystyle c>0}c>0(y)>0{displaystyle Re (y)>0}{displaystyle Re (y)>0},且 y−s{displaystyle y^{-s}}{displaystyle y^{-s}}在主要分支(principal branch)上,我們有


e−y=12πi∫c−i∞c+i∞Γ(s)y−sds{displaystyle e^{-y}={frac {1}{2pi i}}int _{c-iinfty }^{c+iinfty }Gamma (s)y^{-s};ds}{displaystyle e^{-y}={frac {1}{2pi i}}int _{c-iinfty }^{c+iinfty }Gamma (s)y^{-s};ds}

其中 Γ(s){displaystyle Gamma (s)}{displaystyle Gamma (s)}為 Γ函數。



數論


假設


(s+a)<0{displaystyle Re (s+a)<0}{displaystyle Re (s+a)<0}

我們有


f(x)={0x<1xax>1{displaystyle f(x)={begin{cases}0&x<1\x^{a}&x>1end{cases}}}{displaystyle f(x)={begin{cases}0&x<1\x^{a}&x>1end{cases}}}

其中


Mf(s)=−1s+a{displaystyle {mathcal {M}}f(s)=-{frac {1}{s+a}}}{displaystyle {mathcal {M}}f(s)=-{frac {1}{s+a}}}


圓柱坐標系下的拉普拉斯算子


在任何維度的圓柱坐標系中,拉普拉斯算子總是會包含下式


1r∂r(r∂f∂r){displaystyle {frac {1}{r}}{frac {partial }{partial r}}left(r{frac {partial f}{partial r}}right)}{displaystyle {frac {1}{r}}{frac {partial }{partial r}}left(r{frac {partial f}{partial r}}right)}

例如,拉普拉斯算子在二維空間的極坐標表示法


2f=1r∂r(r∂f∂r)+1r2∂2f∂θ2{displaystyle nabla ^{2}f={frac {1}{r}}{frac {partial }{partial r}}left(r{frac {partial f}{partial r}}right)+{frac {1}{r^{2}}}{frac {partial ^{2}f}{partial theta ^{2}}}}{displaystyle nabla ^{2}f={frac {1}{r}}{frac {partial }{partial r}}left(r{frac {partial f}{partial r}}right)+{frac {1}{r^{2}}}{frac {partial ^{2}f}{partial theta ^{2}}}}

或是在三維空間的柱坐標表示法


2f=1r∂r(r∂f∂r)+1r2∂2f∂φ2+∂2f∂z2{displaystyle nabla ^{2}f={frac {1}{r}}{frac {partial }{partial r}}left(r{frac {partial f}{partial r}}right)+{frac {1}{r^{2}}}{frac {partial ^{2}f}{partial varphi ^{2}}}+{frac {partial ^{2}f}{partial z^{2}}}}{displaystyle nabla ^{2}f={frac {1}{r}}{frac {partial }{partial r}}left(r{frac {partial f}{partial r}}right)+{frac {1}{r^{2}}}{frac {partial ^{2}f}{partial varphi ^{2}}}+{frac {partial ^{2}f}{partial z^{2}}}}

而利用梅林變換可以很簡單的處理此項


1r∂r(r∂f∂r)=frr+frr{displaystyle {frac {1}{r}}{frac {partial }{partial r}}left(r{frac {partial f}{partial r}}right)=f_{rr}+{frac {f_{r}}{r}}}{displaystyle {frac {1}{r}}{frac {partial }{partial r}}left(r{frac {partial f}{partial r}}right)=f_{rr}+{frac {f_{r}}{r}}}

M(r2frr+rfr,r→s)=s2M(f,r→s)=s2F{displaystyle {mathcal {M}}left(r^{2}f_{rr}+rf_{r},rto sright)=s^{2}{mathcal {M}}left(f,rto sright)=s^{2}F}{displaystyle {mathcal {M}}left(r^{2}f_{rr}+rf_{r},rto sright)=s^{2}{mathcal {M}}left(f,rto sright)=s^{2}F}

舉例來說,二維拉普拉斯方程的極坐標表示法具有以下形式


r2frr+rfr+fθθ=0{displaystyle r^{2}f_{rr}+rf_{r}+f_{theta theta }=0}{displaystyle r^{2}f_{rr}+rf_{r}+f_{theta theta }=0}

或是


1r∂r(r∂f∂r)+1r2∂2f∂θ2=0{displaystyle {frac {1}{r}}{frac {partial }{partial r}}left(r{frac {partial f}{partial r}}right)+{frac {1}{r^{2}}}{frac {partial ^{2}f}{partial theta ^{2}}}=0}{displaystyle {frac {1}{r}}{frac {partial }{partial r}}left(r{frac {partial f}{partial r}}right)+{frac {1}{r^{2}}}{frac {partial ^{2}f}{partial theta ^{2}}}=0}

利用梅林變換,可以轉換成一個簡諧振子的形式


θ+s2F=0{displaystyle F_{theta theta }+s^{2}F=0}{displaystyle F_{theta theta }+s^{2}F=0}

通解為


F(s,θ)=C1(s)cos⁡(sθ)+C2(s)sin⁡(sθ){displaystyle F(s,theta )=C_{1}(s)cos(stheta )+C_{2}(s)sin(stheta )}{displaystyle F(s,theta )=C_{1}(s)cos(stheta )+C_{2}(s)sin(stheta )}

若給定邊界條件


f(r,−θ0)=a(r),f(r,θ0)=b(r){displaystyle f(r,-theta _{0})=a(r),quad f(r,theta _{0})=b(r)}{displaystyle f(r,-theta _{0})=a(r),quad f(r,theta _{0})=b(r)}

其梅林變換為


F(s,−θ0)=A(s),F(s,θ0)=B(s){displaystyle F(s,-theta _{0})=A(s),quad F(s,theta _{0})=B(s)}{displaystyle F(s,-theta _{0})=A(s),quad F(s,theta _{0})=B(s)}

則通解可以寫成


F(s,θ)=A(s)sin⁡(s(θ0−θ))sin⁡(2θ0s)+B(s)sin⁡(s(θ0+θ))sin⁡(2θ0s){displaystyle F(s,theta )=A(s){frac {sin(s(theta _{0}-theta ))}{sin(2theta _{0}s)}}+B(s){frac {sin(s(theta _{0}+theta ))}{sin(2theta _{0}s)}}}{displaystyle F(s,theta )=A(s){frac {sin(s(theta _{0}-theta ))}{sin(2theta _{0}s)}}+B(s){frac {sin(s(theta _{0}+theta ))}{sin(2theta _{0}s)}}}

最後利用逆變換以及卷積定理


M−1(sin⁡(sφ)sin⁡(2θ0s);s→r)=12θ0rmsin⁡(mφ)1+2rmcos⁡(mφ)+r2m{displaystyle {mathcal {M}}^{-1}left({frac {sin(svarphi )}{sin(2theta _{0}s)}};sto rright)={frac {1}{2theta _{0}}}{frac {r^{m}sin(mvarphi )}{1+2r^{m}cos(mvarphi )+r^{2m}}}}{displaystyle {mathcal {M}}^{-1}left({frac {sin(svarphi )}{sin(2theta _{0}s)}};sto rright)={frac {1}{2theta _{0}}}{frac {r^{m}sin(mvarphi )}{1+2r^{m}cos(mvarphi )+r^{2m}}}}

其中


m=π0{displaystyle m={frac {pi }{2theta _{0}}}}{displaystyle m={frac {pi }{2theta _{0}}}}

可以得到


f(r,θ)=rmcos⁡(mθ)2θ0∫0∞{a(x)x2m+2rmxmsin⁡(mθ)+r2m+b(x)x2m−2rmxmsin⁡(mθ)+r2m}xm−1dx{displaystyle f(r,theta )={frac {r^{m}cos(mtheta )}{2theta _{0}}}int _{0}^{infty }left{{frac {a(x)}{x^{2m}+2r^{m}x^{m}sin(mtheta )+r^{2m}}}+{frac {b(x)}{x^{2m}-2r^{m}x^{m}sin(mtheta )+r^{2m}}}right}x^{m-1},dx}{displaystyle f(r,theta )={frac {r^{m}cos(mtheta )}{2theta _{0}}}int _{0}^{infty }left{{frac {a(x)}{x^{2m}+2r^{m}x^{m}sin(mtheta )+r^{2m}}}+{frac {b(x)}{x^{2m}-2r^{m}x^{m}sin(mtheta )+r^{2m}}}right}x^{m-1},dx}


参考文献



  • Galambos, Janos; Simonelli, Italo. Products of random variables: applications to problems of physics and to arithmetical functions. Marcel Dekker, Inc. 2004. ISBN 0-8247-5402-6. 



Popular posts from this blog

Y

Mount Tamalpais

Indian Forest Service