網 (數學)




在拓撲學和數學的相關領域裡,是序列的廣義化,用來統一極限不同的概念和將其廣義至任意的拓撲空間。網的極限對一般拓撲空間扮演的角色,就好比序列的極限之於第一可數空間(例如度量空間)。


一個序列通常以為全序集合的自然數做為索引。網廣義化了此一概念,以把索引集合上的次序关系削弱成有向集合。


網於西元1922年首次由E. H.摩爾與H. L. Smith提出。另一相關的概念-濾子則於西元1937年由昂利·嘉當所發展。




目录






  • 1 定義


  • 2 例子


  • 3 網的極限


  • 4 網的極限的例子


  • 5 追加定義


  • 6 性質


  • 7 另見


  • 8 參考





定義


X是一拓撲空間,X中的是指一由某一有向集合AX的函數。


A是一有向集合,通常會把由AX的網寫成(xα),以用來表示A的元素α映射到X的元素xα上。通常用≥來標記由A所給定的二元關係。



例子


當自然數是一有向集合且序列是定義域為自然數的函數時,每一序列都會是一個網。


另一重要例子如下。給定拓撲空間上的一點x,讓Nx標記為所有包含x的鄰域的集合。然後,Nx會是個有向集合,其方向由內含的顛倒給定,即STS包含在T裡時。對在Nx內的S,讓xS標記為S內的一點。然後,xS便會是一個網。當S對≥而言為增加時,網內的點sS會被限制在x的遞減鄰域內,直觀地說,這使得xS在某些意義上時必須趨向x。下面將把這一極限的概念講述的更清楚。



網的極限


若(xα)是一由有向集合AX的網,且若YX的子集,則我們說(xα)是最終於'Y若存在一在A內的α能使得任一在A內會有β ≥ α的β,其點xβ會在Y內。


若(xα)是拓撲空間X內的一網,且xX的一元素,我們說這一個網收斂至x或稱有極限x,並寫做


lim xα = x

若且唯若


對任一x的鄰域U,(xα)會最終於U

直觀地說,這表示xα會很靠近x,若α取得夠大。


注意,上述所舉的在一點x的邻域系统上的網根據定義是會確實地收斂至x了。



網的極限的例子


  • 收斂數列


  • 實變數的函數極限:limxcf(x)。這裡,我們根據距c的距離在集合R{c}內取向。


  • 黎曼和的網的極限,用來黎曼積分的定義上。在此例子中,其有向集合為積分區間分割的集合,以內含以其偏序。相似的事情也被用來黎曼-斯蒂爾吉斯積分的定義上。


追加定義


DE為有向集合,且h為一由DE的函數,則h被稱為共尾,若對任一在E內的e,總存在一在D內的d會使得當qD的元素且qd時,h(q) ≥ e。換句地話,其值域h(D)會共尾於E


DE為有向集合,h為由EE的共尾函數,且φ是以E為基的集合X的網,則φoh稱做φ的子網。所有的子網都是這種類型,依其定義。


若φ是一以有向集合D為底的集合X的網,且AX的子集,則φ頻繁地在A,當對於任一在D內的α,存在一在D的β且β ≥ α以使φ(β)在A內。


集合X的網φ稱做普遍的(或超網),若對於任一X的子集A,φ會最終於A或會最終於X-A



性質


幾乎所有拓撲概念都能以網與極限的語言表述。這可以作為直覺的南鍼,因為網的極限在概念上近於序列的極限,後者在度量空間理論中被廣泛地運用。


  • 拓撲空間之間的函數f:X→Y{displaystyle f:Xto Y}f:Xto Y在一點x∈X{displaystyle xin X}x in X連續若且唯若對於每個網(xα){displaystyle (x_{alpha })}(x_{alpha }),若

limxα=x{displaystyle lim x_{alpha }=x}lim x_{alpha }=x

則有


limf(xα)=f(x){displaystyle lim f(x_{alpha })=f(x)}lim f(x_{alpha })=f(x)

若將「網」換為「序列」,則此定理一般非真。當空間X{displaystyle X}X非第一可數時,必須考慮比自然數集更廣的有向集。


  • 一般而言,空間X{displaystyle X}X的網可以有多個極限。當X{displaystyle X}X為豪斯多夫空間時,極限是唯一的;反之,若X{displaystyle X}X非豪斯多夫空間,則存在X{displaystyle X}X中的一個網,使得它有兩個不同極限,因此豪斯多夫性質可以用網的極限刻劃。注意到此結果有賴於有向條件,以一般的預序或偏序為指標的集合仍可能有多個極限。

  • 給定子集合U⊂X{displaystyle Usubset X}Usubset X,則x{displaystyle x}x屬於U{displaystyle U}U的閉包若且為若存在網(xα){displaystyle (x_{alpha })}(x_{alpha }),使得U{displaystyle x_{alpha }in U}x_{alpha }in U而且x{displaystyle x}x為其極限。因此可以用網與極限刻劃閉包運算,從而刻劃開集與閉集。

  • 空間X{displaystyle X}X是緊緻的,若且唯若每個網{displaystyle x_{alpha }}x_{alpha }都有個有極限的子網。這是Bolzano-Weierstrass定理與海涅-博雷尔定理的推廣。


  • 乘積空間中的網的極限由其投影決定:若X=∏Xi{displaystyle X=prod X_{i}}X=prod X_{i},則lim(xα)=x{displaystyle lim(x_{alpha })=x}lim(x_{alpha })=x若且唯若i,limπi(xα)=πi(x){displaystyle forall i,;lim pi _{i}(x_{alpha })=pi _{i}(x)}forall i,;lim pi _{i}(x_{alpha })=pi _{i}(x)

  • f:X→Y{displaystyle f:Xto Y}f:Xto Y是連續函數,(xα){displaystyle (x_{alpha })}(x_{alpha })是超網,則(f(xα)){displaystyle (f(x_{alpha }))}(f(x_{alpha }))亦然。


另見


濾子的理論也提供了在一般拓撲空間內有關收斂的定義。


在一致空間(例如度量空間)中,可以將柯西序列的定義推廣為柯西網,由此導出柯西空間的定義。网 (xα)是柯西网,如果对于所有周围V存在γ使得对于所有α, β ≥ γ,(xα, xβ)是V的成员。



參考


E. H. Moore and H. L. Smith (1922). A General Theory of Limits. American Journal of Mathematics 44 (2), 102–121.







Popular posts from this blog

Y

Mount Tamalpais

Indian Forest Service