Mean value theorem (divided differences)




In mathematical analysis, the mean value theorem for divided differences generalizes the mean value theorem to higher derivatives.[1]




Contents






  • 1 Statement of the theorem


  • 2 Proof


  • 3 Applications


  • 4 References





Statement of the theorem


For any n + 1 pairwise distinct points x0, ..., xn in the domain of an n-times differentiable function f there exists an interior point


ξ(min{x0,…,xn},max{x0,…,xn}){displaystyle xi in (min{x_{0},dots ,x_{n}},max{x_{0},dots ,x_{n}}),}xi in (min{x_{0},dots ,x_{n}},max{x_{0},dots ,x_{n}}),

where the nth derivative of f equals n ! times the nth divided difference at these points:


f[x0,…,xn]=f(n)(ξ)n!.{displaystyle f[x_{0},dots ,x_{n}]={frac {f^{(n)}(xi )}{n!}}.}f[x_{0},dots ,x_{n}]={frac {f^{(n)}(xi )}{n!}}.

For n = 1, that is two function points, one obtains the simple mean value theorem.



Proof


Let P{displaystyle P}P be the Lagrange interpolation polynomial for f at x0, ..., xn.
Then it follows from the Newton form of P{displaystyle P}P that the highest term of P{displaystyle P}P is f[x0,…,xn](x−xn−1)…(x−x1)(x−x0){displaystyle f[x_{0},dots ,x_{n}](x-x_{n-1})dots (x-x_{1})(x-x_{0})}f[x_{0},dots ,x_{n}](x-x_{n-1})dots (x-x_{1})(x-x_{0}).


Let g{displaystyle g}g be the remainder of the interpolation, defined by g=f−P{displaystyle g=f-P}g=f-P. Then g{displaystyle g}g has n+1{displaystyle n+1}n+1 zeros: x0, ..., xn.
By applying Rolle's theorem first to g{displaystyle g}g, then to g′{displaystyle g'}g', and so on until g(n−1){displaystyle g^{(n-1)}}g^{(n-1)}, we find that g(n){displaystyle g^{(n)}}g^{(n)} has a zero ξ{displaystyle xi }xi . This means that




0=g(n)(ξ)=f(n)(ξ)−f[x0,…,xn]n!{displaystyle 0=g^{(n)}(xi )=f^{(n)}(xi )-f[x_{0},dots ,x_{n}]n!}0=g^{(n)}(xi )=f^{(n)}(xi )-f[x_{0},dots ,x_{n}]n!,

f[x0,…,xn]=f(n)(ξ)n!.{displaystyle f[x_{0},dots ,x_{n}]={frac {f^{(n)}(xi )}{n!}}.}f[x_{0},dots ,x_{n}]={frac {f^{(n)}(xi )}{n!}}.



Applications


The theorem can be used to generalise the Stolarsky mean to more than two variables.



References





  1. ^ de Boor, C. (2005). "Divided differences". Surv. Approx. Theory. 1: 46&ndash, 69. MR 2221566..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}









Popular posts from this blog

Y

Mount Tamalpais

Indian Forest Service