Graph kernel





In structure mining, a domain of learning on structured data objects in machine learning, a graph kernel is a kernel function that computes an inner product on graphs.[1]
Graph kernels can be intuitively understood as functions measuring the similarity of pairs of graphs. They allow kernelized learning algorithms such as support vector machines to work directly on graphs, without having to do feature extraction to transform them to fixed-length, real-valued feature vectors. They find applications in bioinformatics, in chemoinformatics (as a type of molecule kernels[2]), and in social network analysis.[1]


Concepts of graph kernels have been around since the 1999, when D. Haussler[3] introduced convolutional kernels on discrete structures. The term graph kernels was more officially coined in 2002 by R. I. Kondor and John Lafferty[4]
as kernels on graphs, i.e. similarity functions between the nodes of a single graph, with the World Wide Web hyperlink graph as a suggested application. In 2003, Gaertner et al.[5]
and Kashima et al.[6]
defined kernels between graphs. In 2010, Vishwanathan et al. gave their unified framework.[1] In 2018, Ghosh et al. [7] described the history of graph kernels and their evolution over two decades.


An example of a kernel between graphs is the random walk kernel[5][6], which conceptually performs random walks on two graphs simultaneously, then counts the number of paths that were produced by both walks. This is equivalent to doing random walks on the direct product of the pair of graphs, and from this, a kernel can be derived that can be efficiently computed.[1]



References





  1. ^ abcd S.V. N. Vishwanathan; Nicol N. Schraudolph; Risi Kondor; Karsten M. Borgwardt (2010). "Graph kernels" (PDF). Journal of Machine Learning Research. 11: 1201–1242..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ L. Ralaivola; S. J. Swamidass; H. Saigo; P. Baldi (2005). "Graph kernels for chemical informatics". Neural Networks. 18: 1093–1110. doi:10.1016/j.neunet.2005.07.009.


  3. ^ Haussler, David (1999). Convolution Kernels on Discrete Structures.


  4. ^ Risi Imre Kondor; John Lafferty (2002). Diffusion Kernels on Graphs and Other Discrete Input Spaces (PDF). Proc. Int'l Conf. on Machine Learning (ICML).


  5. ^ ab Thomas Gaertner; Peter Flach; Stefan Wrobel (2003). On graph kernels: Hardness results and efficient alternatives. Proc. the 16th Annual Conference on Computational Learning Theory (COLT) and the 7th Kernel Workshop.


  6. ^ ab Hisashi Kashima; Koji Tsuda; Akihiro Inokuchi (2003). Marginalized kernels between labeled graphs (PDF). Proc. the 20th International Conference on Machine Learning (ICML).


  7. ^ Ghosh, Swarnendu; Das, Nibaran; Gonçalves, Teresa; Quaresma, Paulo; Kundu, Mahantapas. "The journey of graph kernels through two decades". Computer Science Review. 27: 88–111. doi:10.1016/j.cosrev.2017.11.002.




See also




  • Tree kernel, as special case of non-cyclic graphs


  • Molecule mining, as special case of small multi-label graphs








Popular posts from this blog

澳門輕軌系統

水泉澳邨

Indian Forest Service