Counting measure




In mathematics, the counting measure is an intuitive way to put a measure on any set: the "size" of a subset is taken to be: the number of elements in the subset if the subset has finitely many elements, and ∞ if the subset is infinite.[1]


The counting measure can be defined on any measurable set, but is mostly used on countable sets.[1]


In formal notation, we can make any set X into a measurable space by taking the sigma-algebra Σ{displaystyle Sigma }Sigma of measurable subsets to consist of all subsets of X{displaystyle X}X. Then the counting measure μ{displaystyle mu }mu on this measurable space (X,Σ){displaystyle (X,Sigma )}(X,Sigma ) is the positive measure Σ[0,+∞]{displaystyle Sigma rightarrow [0,+infty ]}Sigma rightarrow [0,+infty ] defined by


μ(A)={|A|if A is finite+∞if A is infinite{displaystyle mu (A)={begin{cases}vert Avert &{text{if }}A{text{ is finite}}\+infty &{text{if }}A{text{ is infinite}}end{cases}}}mu (A)={begin{cases}vert Avert &{text{if }}A{text{ is finite}}\+infty &{text{if }}A{text{ is infinite}}end{cases}}

for all A∈Σ{displaystyle Ain Sigma }Ain Sigma , where |A|{displaystyle vert Avert }vert Avert denotes the cardinality of the set A{displaystyle A}A.[2]


The counting measure on (X,Σ){displaystyle (X,Sigma )}(X,Sigma ) is σ-finite if and only if the space X{displaystyle X}X is countable.[3]



Discussion


The counting measure is a special case of a more general construct. With the notation as above, any function f:X→[0,∞){displaystyle fcolon Xto [0,infty )}fcolon Xto [0,infty ) defines a measure μ{displaystyle mu }mu
on (X,Σ){displaystyle (X,Sigma )}(X,Sigma ) via


μ(A):=∑a∈Af(a)∀A⊆X,{displaystyle mu (A):=sum _{ain A}f(a),forall Asubseteq X,}{displaystyle mu (A):=sum _{ain A}f(a),forall Asubseteq X,}

where the possibly uncountable sum of real numbers is defined to be the sup of the sums over all finite subsets, i.e.,


y∈Y⊆Ry:=supF⊆Y,|F|<∞{∑y∈Fy}.{displaystyle sum _{yin Ysubseteq mathbb {R} }y:=sup _{Fsubseteq Y,|F|<infty }left{sum _{yin F}yright}.}sum _{{yin Ysubseteq {mathbb  R}}}y:=sup _{{Fsubseteq Y,|F|<infty }}left{sum _{{yin F}}yright}.

Taking f(x)=1 for all x in X produces the counting measure.



Notes





  1. ^ ab Counting Measure at PlanetMath.org.


  2. ^ Schilling (2005), p.27


  3. ^ Hansen (2009) p.47




References



  • Schilling, René L. (2005). Measures, Integral and Martingales. Cambridge University Press.

  • Hansen, Ernst (2009). Measure Theory, Fourth Edition. Department of Mathematical Science, University of Copenhagen.




Popular posts from this blog

Y

Mount Tamalpais

Indian Forest Service