Sodium azide































































































































































































Sodium azide

Sodium azide.svg

NaN3SmallSection.tif
Names
Other names
Sodium trinitride
Smite
Azium

Identifiers

CAS Number



  • 26628-22-8 ☑Y


3D model (JSmol)


  • Interactive image


ChEBI


  • CHEBI:278547 ☑Y


ChEMBL


  • ChEMBL89295 ☑Y


ChemSpider


  • 30958 ☑Y


ECHA InfoCard

100.043.487

EC Number
247-852-1


PubChem CID


  • 33557


RTECS number
VY8050000

UN number

1687




Properties

Chemical formula

NaN3

Molar mass
65.0099 g/mol
Appearance
colorless to white solid

Odor
odorless

Density
1.846 g/cm3 (20 °C)

Melting point
275 °C (527 °F; 548 K) violent decomposition

Solubility in water

38.9 g/100 mL (0 °C)
40.8 g/100 mL (20 °C)
55.3 g/100 mL (100 °C)

Solubility
very soluble in ammonia
slightly soluble in benzene
insoluble in ether, acetone, hexane, chloroform

Solubility in methanol
2.48 g/100 mL (25 °C)

Solubility in ethanol
0.22 g/100 mL (0 °C)

Acidity (pKa)
4.8
Structure

Crystal structure


Hexagonal, hR12[1]

Space group

R-3m, No. 166
Thermochemistry


Heat capacity (C)

76.6 J/mol K


Std molar
entropy (So298)

70.5 J/mol K


Std enthalpy of
formation (ΔfHo298)

21.3 kJ/mol


Gibbs free energy (ΔfG˚)

99.4 kJ/mol
Hazards

Safety data sheet

ICSC 0950

GHS pictograms

The exploding-bomb pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)The skull-and-crossbones pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)The health hazard pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)The environment pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)

GHS signal word

DANGER

GHS hazard statements


H300, H310, H400, H410

GHS precautionary statements


P260, P280, P301+310, P501 [2]

NFPA 704



Flammability code 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g., canola oil
Health code 4: Very short exposure could cause death or major residual injury. E.g., VX gas
Reactivity code 3: Capable of detonation or explosive decomposition but requires a strong initiating source, must be heated under confinement before initiation, reacts explosively with water, or will detonate if severely shocked. E.g., fluorine
Special hazards (white): no code
NFPA 704 four-colored diamond


1


4


3



Flash point
300 °C (572 °F; 573 K)
Lethal dose or concentration (LD, LC):


LD50 (median dose)

27 mg/kg (oral, rats/mice)[1]
US health exposure limits (NIOSH):


PEL (Permissible)

none[3]


REL (Recommended)

C 0.1 ppm (as HN3) [skin] C 0.3 mg/m3 (as NaN3) [skin][3]


IDLH (Immediate danger)

N.D.[3]
Related compounds

Other anions


Sodium cyanide

Other cations


Potassium azide
Ammonium azide

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).


☒N verify (what is ☑Y☒N ?)

Infobox references



Sodium azide is the inorganic compound with the formula NaN3. This colorless salt is the gas-forming component in many car airbag systems. It is used for the preparation of other azide compounds. It is an ionic substance, is highly soluble in water, and is very acutely toxic.[5]




Contents






  • 1 Structure


  • 2 Preparation


    • 2.1 Laboratory methods




  • 3 Chemical reactions


  • 4 Applications


    • 4.1 Automobile airbags and airplane escape chutes


    • 4.2 Organic and inorganic synthesis


    • 4.3 Biochemistry and biomedical uses


    • 4.4 Agricultural uses




  • 5 Safety considerations


  • 6 References


  • 7 External links





Structure


Sodium azide is an ionic solid. Two crystalline forms are known, rhombohedral and hexagonal.[1][6] Both adopt layered structures. The azide anion is very similar in each form, being centrosymmetric with N–N distances of 1.18 Å. The Na+
ion has octahedral geometry. Each azide is linked to six Na+ centers, with three Na-N bonds to each terminal nitrogen center.[7]



Preparation


The common synthesis method is the "Wislicenus process," which proceeds in two steps from ammonia. In the first step, ammonia is converted to sodium amide:


2 Na + 2 NH3 → 2 NaNH2 + H2

The sodium amide is subsequently combined with nitrous oxide:


2 NaNH2 + N2O → NaN3 + NaOH + NH3

These reactions are the basis of the industrial route, which produced about 250 tons/y in 2004, with production increasing owing to the popularization of airbags.[5]



Laboratory methods


Curtius and Thiele developed another production process where a nitrite ester is converted to sodium azide using hydrazine. This method is suited for laboratory preparation of sodium azide:



2 NaNO2 + 2 C2H5OH +H2SO4 → 2 C2H5ONO + Na2SO4 + 2 H2O

C2H5ONO + N2H4-H2O + NaOH → NaN3 + C2H5OH + 3 H2O


Alternatively the salt can be obtained by the reaction of sodium nitrate with sodium amide.[8]



Chemical reactions


Treatment of sodium azide with strong acids gives hydrazoic acid, which is also extremely toxic:



H+
+ N
3
HN
3


Aqueous solutions contain minute amounts of hydrogen azide, the formation of which is described by the following equilibrium:



N
3
+ H
2
O
HN
3
+ OH
(K = 10−4.6
)

Sodium azide can be destroyed by treatment with nitrous acid solution:[9]


2 NaN3 + 2 HNO2 → 3 N2 + 2 NO + 2 NaOH


Applications



Automobile airbags and airplane escape chutes


Older airbag formulations contained mixtures of oxidizers and sodium azide and other agents including ignitors and accelerants. An electronic controller detonates this mixture during an automobile crash:


2 NaN3 → 2Na + 3 N2

The same reaction occurs upon heating the salt to approximately 300 °C. The sodium that is formed is a potential hazard alone and, in automobile airbags, it is converted by reaction with other ingredients, such as potassium nitrate and silica. In the latter case, innocuous sodium silicates are generated.[10] Sodium azide is also used in airplane escape chutes. Newer generation air bags contain nitroguanidine or similar less sensitive explosives.



Organic and inorganic synthesis


Due to its explosion hazard, sodium azide is of only limited value in industrial scale organic chemistry. In the laboratory, it is used in organic synthesis to introduce the azide functional group by displacement of halides. The azide functional group can thereafter be converted to an amine by reduction with either SnCl2 in ethanol or lithium aluminium hydride or a tertiary phosphine, such as triphenylphosphine in the Staudinger reaction, with Raney nickel or with hydrogen sulfide in pyridine.


Sodium azide is a versatile precursor to other inorganic azide compounds, e.g., lead azide and silver azide, which are used in explosives.



Biochemistry and biomedical uses


Sodium azide is a useful probe reagent and a preservative.


In hospitals and laboratories, it is a biocide; it is especially important in bulk reagents and stock solutions which may otherwise support bacterial growth where the sodium azide acts as a bacteriostatic by inhibiting cytochrome oxidase in gram-negative bacteria; gram-positive (streptococci, pneumococci, lactobacilli) are intrinsically resistant.[11]



Agricultural uses


It is used in agriculture for pest control of soil-borne pathogens such as Meloidogyne incognita or Helicotylenchus dihystera.[12]


It is also used as a mutagen for crop selection of plants such as rice,[13] barley[14] or oats.[15]



Safety considerations


Sodium azide has caused deaths for decades.[16] It is a severe poison. It possesses the NFPA 704's highest rating of 4 on the heath scale. It may be fatal in contact with skin or if swallowed.[17] Even minute amounts can cause symptoms. The toxicity of this compound is comparable to that of soluble alkali cyanides.[18] No toxicity has been reported from spent airbags.[19]


It produces extrapyramidal symptoms with necrosis of the cerebral cortex, cerebellum, and basal ganglia. Toxicity may also include hypotension,[20]blindness and hepatic necrosis. Sodium azide increases cyclic GMP levels in brain and liver by activation of guanylate cyclase.[21]



References





  1. ^ abc Stevens E. D.; Hope H. (1977). "A Study of the Electron-Density Distribution in Sodium Azide, NaN
    3
    ". Acta Crystallographica A. 33 (5): 723–729. doi:10.1107/S0567739477001855.
    .mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}



  2. ^ https://molekula.com/catalog/26628-22-8/31803515-Sodium%20azide


  3. ^ abc "NIOSH Pocket Guide to Chemical Hazards #0560". National Institute for Occupational Safety and Health (NIOSH).


  4. ^ "Material Safety Data Sheet" (PDF). Sciencelab.com. November 6, 2008. Retrieved October 2015. Check date values in: |accessdate= (help)


  5. ^ ab Jobelius, Horst H.; Scharff, Hans-Dieter (2000). "Hydrazoic Acid and Azides". Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH. doi:10.1002/14356007.a13_193. ISBN 9783527306732.


  6. ^ Wells, A. F. (1984), Structural Inorganic Chemistry (5th ed.), Oxford: Clarendon Press, ISBN 0-19-855370-6


  7. ^ Pringle, G. E.; Noakes, D. E. (1968-02-15). "The crystal structures of lithium, sodium and strontium azides". Acta Crystallographica Section B. 24 (2): 262–269. doi:10.1107/s0567740868002062.


  8. ^ Holleman, Arnold Frederik; Wiberg, Egon (2001), Wiberg, Nils, ed., Inorganic Chemistry, translated by Eagleson, Mary; Brewer, William, San Diego/Berlin: Academic Press/De Gruyter, ISBN 0-12-352651-5


  9. ^ Committee on Prudent Practices for Handling, Storage, and Disposal of Chemicals in Laboratories, Board on Chemical Sciences and Technology, Commission on Physical Sciences, Mathematics, and Applications, National Research Council (1995). "Disposal of Waste". Prudent Practices in the Laboratory: Handling and Disposal of Chemicals. Washington, DC: National Academy Press. p. 165. ISBN 978-0-309-05229-0.CS1 maint: Multiple names: authors list (link)


  10. ^ Betterton, E. A. (2003). "Environmental Fate of Sodium Azide Derived from Automobile Airbags". Critical Reviews in Environmental Science and Technology. 33 (4): 423–458. doi:10.1080/10643380390245002.


  11. ^ Lichstein, H. C.; Soule, M. H. (1943). "Studies of the Effect of Sodium Azide on Microbic Growth and Respiration: I. The Action of Sodium Azide on Microbic Growth". Journal of Bacteriology. 47 (3): 221–230. PMC 373901. PMID 16560767.


  12. ^ Applications of sodium azide for control of soilborne pathogens in potatoes. Rodriguez-Kabana, R., Backman, P. A. and King, P.S., Plant Disease Reporter, 1975, Vol. 59, No. 6, pp. 528-532 (link)


  13. ^ Awan, M. Afsar; Konzak, C. F.; Rutger, J. N.; Nilan, R. A. (2000-01-01). "Mutagenic Effects of Sodium Azide in Rice1". Crop Science. 20 (5): 663–668. doi:10.2135/cropsci1980.0011183x002000050030x.


  14. ^ Cheng, Xiongying; Gao, Mingwei (1988). "Biological and genetic effects of combined treatments of sodium azide, gamma rays and EMS in barley". Environmental and Experimental Botany. 28 (4): 281–288. doi:10.1016/0098-8472(88)90051-2.


  15. ^ Rines, H. W. (1985-02-01). "Sodium azide mutagenesis in diploid and hexaploid oats and comparison with ethyl methanesulfonate treatments". Environmental and Experimental Botany. 25 (1): 7–16. doi:10.1016/0098-8472(85)90043-7.


  16. ^ Chang, Soju; Lamm, Steven H. (2003-05-01). "Human Health Effects of Sodium Azide Exposure: A Literature Review and Analysis". International Journal of Toxicology. 22 (3): 175–186. doi:10.1080/10915810305109. ISSN 1091-5818. PMID 12851150.


  17. ^ Richardson, S. G.; Giles, C.; Swan, C. H. (1975-05-01). "Two cases of sodium azide poisoning by accidental ingestion of Isoton". Journal of Clinical Pathology. 28 (5): 350–351. doi:10.1136/jcp.28.5.350. ISSN 1472-4146. PMC 475710. PMID 1150884.


  18. ^ "MSDS: sodium azide". Mallinckrodt Baker. 2008-11-21. MSDS S2906.


  19. ^ Olson, Kent; Anderson, Ilene B. (18 September 2006). Poisoning & Drug Overdose, 5th Edition. McGraw-Hill Companies,Incorporated. pp. 123–. ISBN 978-0-07-144333-3.


  20. ^ Gordon, Steven M.; Drachman, Jonathan; Bland, Lee A.; Reid, Marie H.; Favero, Martin; Jarvis, William R. (1990-01-01). "Kidney International - Abstract of article: Epidemic hypotension in a dialysis center caused by sodium azide". Kidney Int. 37 (1): 110–115. doi:10.1038/ki.1990.15. ISSN 0085-2538.


  21. ^ Kimura, Hiroshi; Mittal, Chandra K.; Murad, Ferid (1975-10-23). "Increases in cyclic GMP levels in brain and liver with sodium azide an activator of guanylate cyclase". Nature. 257 (5528): 700–702. doi:10.1038/257700a0.




External links




  • International Chemical Safety Card 0950.


  • NIOSH Pocket Guide to Chemical Hazards.


  • Straight Dope on Sodium Azide

































































































































































Popular posts from this blog

Y

Mount Tamalpais

Indian Forest Service