Euler's continued fraction formula




In the analytic theory of continued fractions, Euler's continued fraction formula is an identity connecting a certain very general infinite series with an infinite continued fraction. First published in 1748, it was at first regarded as a simple identity connecting a finite sum with a finite continued fraction in such a way that the extension to the infinite case was immediately apparent.[1] Today it is more fully appreciated as a useful tool in analytic attacks on the general convergence problem for infinite continued fractions with complex elements.




Contents






  • 1 The original formula


  • 2 Euler's formula


  • 3 Proof


  • 4 Examples


    • 4.1 The exponential function


    • 4.2 The natural logarithm


    • 4.3 The trigonometric functions


      • 4.3.1 The inverse trigonometric functions




    • 4.4 A continued fraction for π


    • 4.5 The hyperbolic functions


      • 4.5.1 The inverse hyperbolic functions






  • 5 See also


  • 6 Notes


  • 7 References





The original formula


Euler derived the formula as
connecting a finite sum of products with a finite continued fraction.


a0+a0a1+a0a1a2+⋯+a0a1a2⋯an=a01−a11+a1−a21+a2−an−11+an−1−an1+an{displaystyle a_{0}+a_{0}a_{1}+a_{0}a_{1}a_{2}+cdots +a_{0}a_{1}a_{2}cdots a_{n}={cfrac {a_{0}}{1-{cfrac {a_{1}}{1+a_{1}-{cfrac {a_{2}}{1+a_{2}-{cfrac {ddots }{ddots {cfrac {a_{n-1}}{1+a_{n-1}-{cfrac {a_{n}}{1+a_{n}}}}}}}}}}}}},}a_{0}+a_{0}a_{1}+a_{0}a_{1}a_{2}+cdots +a_{0}a_{1}a_{2}cdots a_{n}={cfrac  {a_{0}}{1-{cfrac  {a_{1}}{1+a_{1}-{cfrac  {a_{2}}{1+a_{2}-{cfrac  {ddots }{ddots {cfrac  {a_{{n-1}}}{1+a_{{n-1}}-{cfrac  {a_{n}}{1+a_{n}}}}}}}}}}}}},

The identity is easily established by induction on n, and is therefore applicable in the limit: if the expression on the left is extended to represent a convergent infinite series, the expression on the right can also be extended to represent a convergent infinite continued fraction.



Euler's formula


If ri are complex numbers and x is defined by


x=1+∑i=1∞r1r2⋯ri=1+∑i=1∞(∏j=1irj),{displaystyle x=1+sum _{i=1}^{infty }r_{1}r_{2}cdots r_{i}=1+sum _{i=1}^{infty }left(prod _{j=1}^{i}r_{j}right),,}{displaystyle x=1+sum _{i=1}^{infty }r_{1}r_{2}cdots r_{i}=1+sum _{i=1}^{infty }left(prod _{j=1}^{i}r_{j}right),,}

then this equality can be proved by induction



x=11−r11+r1−r21+r2−r31+r3−{displaystyle x={cfrac {1}{1-{cfrac {r_{1}}{1+r_{1}-{cfrac {r_{2}}{1+r_{2}-{cfrac {r_{3}}{1+r_{3}-ddots }}}}}}}},}{displaystyle x={cfrac {1}{1-{cfrac {r_{1}}{1+r_{1}-{cfrac {r_{2}}{1+r_{2}-{cfrac {r_{3}}{1+r_{3}-ddots }}}}}}}},}.

Here equality is to be understood as equivalence, in the sense that the n'th convergent of each continued fraction is equal to the n'th partial sum of the series shown above. So if the series shown is convergent – or uniformly convergent, when the ri's are functions of some complex variable z – then the continued fractions also converge, or converge uniformly.[2]



Proof


The expression a0+a0a1+a0a1a2+a0a1a2a3{displaystyle a_{0}+a_{0}a_{1}+a_{0}a_{1}a_{2}+a_{0}a_{1}a_{2}a_{3}}{displaystyle a_{0}+a_{0}a_{1}+a_{0}a_{1}a_{2}+a_{0}a_{1}a_{2}a_{3}} can be rearranged into a continued fraction.


a0+a0a1+a0a1a2+a0a1a2a3=a0(a1(a2(a3+1)+1)+1)=a01a1(a2(a3+1)+1)+1=a0a1(a2(a3+1)+1)+1a1(a2(a3+1)+1)+1−a1(a2(a3+1)+1)a1(a2(a3+1)+1)+1=a01−a1(a2(a3+1)+1)a1(a2(a3+1)+1)+1=a01−a1a1(a2(a3+1)+1)+1a2(a3+1)+1=a01−a1a1(a2(a3+1)+1)a2(a3+1)+1+a2(a3+1)+1a2(a3+1)+1−a2(a3+1)a2(a3+1)+1=a01−a11+a1−a2(a3+1)a2(a3+1)+1=a01−a11+a1−a2a2(a3+1)+1a3+1=a01−a11+a1−a2a2(a3+1)a3+1+a3+1a3+1−a3a3+1=a01−a11+a1−a21+a2−a31+a3{displaystyle {begin{aligned}a_{0}+a_{0}a_{1}+a_{0}a_{1}a_{2}+a_{0}a_{1}a_{2}a_{3}&=a_{0}(a_{1}(a_{2}(a_{3}+1)+1)+1)\[8pt]&={cfrac {a_{0}}{cfrac {1}{a_{1}(a_{2}(a_{3}+1)+1)+1}}}\[8pt]&={cfrac {a_{0}}{{cfrac {a_{1}(a_{2}(a_{3}+1)+1)+1}{a_{1}(a_{2}(a_{3}+1)+1)+1}}-{cfrac {a_{1}(a_{2}(a_{3}+1)+1)}{a_{1}(a_{2}(a_{3}+1)+1)+1}}}}={cfrac {a_{0}}{1-{cfrac {a_{1}(a_{2}(a_{3}+1)+1)}{a_{1}(a_{2}(a_{3}+1)+1)+1}}}}\[8pt]&={cfrac {a_{0}}{1-{cfrac {a_{1}}{cfrac {a_{1}(a_{2}(a_{3}+1)+1)+1}{a_{2}(a_{3}+1)+1}}}}}\[8pt]&={cfrac {a_{0}}{1-{cfrac {a_{1}}{{cfrac {a_{1}(a_{2}(a_{3}+1)+1)}{a_{2}(a_{3}+1)+1}}+{cfrac {a_{2}(a_{3}+1)+1}{a_{2}(a_{3}+1)+1}}-{cfrac {a_{2}(a_{3}+1)}{a_{2}(a_{3}+1)+1}}}}}}={cfrac {a_{0}}{1-{cfrac {a_{1}}{1+a_{1}-{cfrac {a_{2}(a_{3}+1)}{a_{2}(a_{3}+1)+1}}}}}}\[8pt]&={cfrac {a_{0}}{1-{cfrac {a_{1}}{1+a_{1}-{cfrac {a_{2}}{cfrac {a_{2}(a_{3}+1)+1}{a_{3}+1}}}}}}}\[8pt]&={cfrac {a_{0}}{1-{cfrac {a_{1}}{1+a_{1}-{cfrac {a_{2}}{{cfrac {a_{2}(a_{3}+1)}{a_{3}+1}}+{cfrac {a_{3}+1}{a_{3}+1}}-{cfrac {a_{3}}{a_{3}+1}}}}}}}}={cfrac {a_{0}}{1-{cfrac {a_{1}}{1+a_{1}-{cfrac {a_{2}}{1+a_{2}-{cfrac {a_{3}}{1+a_{3}}}}}}}}}end{aligned}}}{displaystyle {begin{aligned}a_{0}+a_{0}a_{1}+a_{0}a_{1}a_{2}+a_{0}a_{1}a_{2}a_{3}&=a_{0}(a_{1}(a_{2}(a_{3}+1)+1)+1)\[8pt]&={cfrac {a_{0}}{cfrac {1}{a_{1}(a_{2}(a_{3}+1)+1)+1}}}\[8pt]&={cfrac {a_{0}}{{cfrac {a_{1}(a_{2}(a_{3}+1)+1)+1}{a_{1}(a_{2}(a_{3}+1)+1)+1}}-{cfrac {a_{1}(a_{2}(a_{3}+1)+1)}{a_{1}(a_{2}(a_{3}+1)+1)+1}}}}={cfrac {a_{0}}{1-{cfrac {a_{1}(a_{2}(a_{3}+1)+1)}{a_{1}(a_{2}(a_{3}+1)+1)+1}}}}\[8pt]&={cfrac {a_{0}}{1-{cfrac {a_{1}}{cfrac {a_{1}(a_{2}(a_{3}+1)+1)+1}{a_{2}(a_{3}+1)+1}}}}}\[8pt]&={cfrac {a_{0}}{1-{cfrac {a_{1}}{{cfrac {a_{1}(a_{2}(a_{3}+1)+1)}{a_{2}(a_{3}+1)+1}}+{cfrac {a_{2}(a_{3}+1)+1}{a_{2}(a_{3}+1)+1}}-{cfrac {a_{2}(a_{3}+1)}{a_{2}(a_{3}+1)+1}}}}}}={cfrac {a_{0}}{1-{cfrac {a_{1}}{1+a_{1}-{cfrac {a_{2}(a_{3}+1)}{a_{2}(a_{3}+1)+1}}}}}}\[8pt]&={cfrac {a_{0}}{1-{cfrac {a_{1}}{1+a_{1}-{cfrac {a_{2}}{cfrac {a_{2}(a_{3}+1)+1}{a_{3}+1}}}}}}}\[8pt]&={cfrac {a_{0}}{1-{cfrac {a_{1}}{1+a_{1}-{cfrac {a_{2}}{{cfrac {a_{2}(a_{3}+1)}{a_{3}+1}}+{cfrac {a_{3}+1}{a_{3}+1}}-{cfrac {a_{3}}{a_{3}+1}}}}}}}}={cfrac {a_{0}}{1-{cfrac {a_{1}}{1+a_{1}-{cfrac {a_{2}}{1+a_{2}-{cfrac {a_{3}}{1+a_{3}}}}}}}}}end{aligned}}}

This can be applied to a sequence of any length, and will therefore also apply in the infinite case.



Examples



The exponential function


The exponential function ez is an entire function with a power series expansion that converges uniformly on every bounded domain in the complex plane.


ez=1+∑n=1∞znn!=1+∑n=1∞(∏j=1nzj){displaystyle e^{z}=1+sum _{n=1}^{infty }{frac {z^{n}}{n!}}=1+sum _{n=1}^{infty }left(prod _{j=1}^{n}{frac {z}{j}}right),}e^{z}=1+sum _{{n=1}}^{infty }{frac  {z^{n}}{n!}}=1+sum _{{n=1}}^{infty }left(prod _{{j=1}}^{n}{frac  {z}{j}}right),

The application of Euler's continued fraction formula is straightforward:


ez=11−z1+z−12z1+12z−13z1+13z−14z1+14z−.{displaystyle e^{z}={cfrac {1}{1-{cfrac {z}{1+z-{cfrac {{frac {1}{2}}z}{1+{frac {1}{2}}z-{cfrac {{frac {1}{3}}z}{1+{frac {1}{3}}z-{cfrac {{frac {1}{4}}z}{1+{frac {1}{4}}z-ddots }}}}}}}}}}.,}e^{z}={cfrac  {1}{1-{cfrac  {z}{1+z-{cfrac  {{frac  {1}{2}}z}{1+{frac  {1}{2}}z-{cfrac  {{frac  {1}{3}}z}{1+{frac  {1}{3}}z-{cfrac  {{frac  {1}{4}}z}{1+{frac  {1}{4}}z-ddots }}}}}}}}}}.,

Applying an equivalence transformation that consists of clearing the fractions this example is simplified to


ez=11−z1+z−z2+z−2z3+z−3z4+z−{displaystyle e^{z}={cfrac {1}{1-{cfrac {z}{1+z-{cfrac {z}{2+z-{cfrac {2z}{3+z-{cfrac {3z}{4+z-ddots }}}}}}}}}},}e^{z}={cfrac  {1}{1-{cfrac  {z}{1+z-{cfrac  {z}{2+z-{cfrac  {2z}{3+z-{cfrac  {3z}{4+z-ddots }}}}}}}}}},

and we can be certain that this continued fraction converges uniformly on every bounded domain in the complex plane because it is equivalent to the power series for ez.



The natural logarithm


The Taylor series for the principal branch of the natural logarithm in the neighborhood of z = 1 is well known:


log⁡(1+z)=z−z22+z33−z44+⋯=∑n=1∞(−1)n+1znn.{displaystyle log(1+z)=z-{frac {z^{2}}{2}}+{frac {z^{3}}{3}}-{frac {z^{4}}{4}}+cdots =sum _{n=1}^{infty }{frac {(-1)^{n+1}z^{n}}{n}}.,}{displaystyle log(1+z)=z-{frac {z^{2}}{2}}+{frac {z^{3}}{3}}-{frac {z^{4}}{4}}+cdots =sum _{n=1}^{infty }{frac {(-1)^{n+1}z^{n}}{n}}.,}

This series converges when |z| < 1 and can also be expressed as a sum of products:[3]


log⁡(1+z)=z+(z)(−z2)+(z)(−z2)(−2z3)+(z)(−z2)(−2z3)(−3z4)+⋯{displaystyle log(1+z)=z+(z)left({frac {-z}{2}}right)+(z)left({frac {-z}{2}}right)left({frac {-2z}{3}}right)+(z)left({frac {-z}{2}}right)left({frac {-2z}{3}}right)left({frac {-3z}{4}}right)+cdots }{displaystyle log(1+z)=z+(z)left({frac {-z}{2}}right)+(z)left({frac {-z}{2}}right)left({frac {-2z}{3}}right)+(z)left({frac {-z}{2}}right)left({frac {-2z}{3}}right)left({frac {-3z}{4}}right)+cdots }

Applying Euler's continued fraction formula to this expression shows that


log⁡(1+z)=z1−z21+−z2−2z31+−2z3−3z41+−3z4−{displaystyle log(1+z)={cfrac {z}{1-{cfrac {frac {-z}{2}}{1+{frac {-z}{2}}-{cfrac {frac {-2z}{3}}{1+{frac {-2z}{3}}-{cfrac {frac {-3z}{4}}{1+{frac {-3z}{4}}-ddots }}}}}}}}}{displaystyle log(1+z)={cfrac {z}{1-{cfrac {frac {-z}{2}}{1+{frac {-z}{2}}-{cfrac {frac {-2z}{3}}{1+{frac {-2z}{3}}-{cfrac {frac {-3z}{4}}{1+{frac {-3z}{4}}-ddots }}}}}}}}}

and using an equivalence transformation to clear all the fractions results in


log⁡(1+z)=z1+z2−z+22z3−2z+32z4−3z+⋱{displaystyle log(1+z)={cfrac {z}{1+{cfrac {z}{2-z+{cfrac {2^{2}z}{3-2z+{cfrac {3^{2}z}{4-3z+ddots }}}}}}}}}{displaystyle log(1+z)={cfrac {z}{1+{cfrac {z}{2-z+{cfrac {2^{2}z}{3-2z+{cfrac {3^{2}z}{4-3z+ddots }}}}}}}}}



This continued fraction converges when |z| < 1 because it is equivalent to the series from which it was derived.[3]



The trigonometric functions


The Taylor series of the sine function converges over the entire complex plane and can be expressed as the sum of products.


sin⁡x=∑n=0∞(−1)n(2n+1)!x2n+1=x−x33!+x55!−x77!+x99!−=x+(x)(−x22⋅3)+(x)(−x22⋅3)(−x24⋅5)+(x)(−x22⋅3)(−x24⋅5)(−x26⋅7)+⋯{displaystyle {begin{aligned}sin x=sum _{n=0}^{infty }{frac {(-1)^{n}}{(2n+1)!}}x^{2n+1}&=x-{frac {x^{3}}{3!}}+{frac {x^{5}}{5!}}-{frac {x^{7}}{7!}}+{frac {x^{9}}{9!}}-cdots \[8pt]&=x+(x)left({frac {-x^{2}}{2cdot 3}}right)+(x)left({frac {-x^{2}}{2cdot 3}}right)left({frac {-x^{2}}{4cdot 5}}right)+(x)left({frac {-x^{2}}{2cdot 3}}right)left({frac {-x^{2}}{4cdot 5}}right)left({frac {-x^{2}}{6cdot 7}}right)+cdots end{aligned}}}{displaystyle {begin{aligned}sin x=sum _{n=0}^{infty }{frac {(-1)^{n}}{(2n+1)!}}x^{2n+1}&=x-{frac {x^{3}}{3!}}+{frac {x^{5}}{5!}}-{frac {x^{7}}{7!}}+{frac {x^{9}}{9!}}-cdots \[8pt]&=x+(x)left({frac {-x^{2}}{2cdot 3}}right)+(x)left({frac {-x^{2}}{2cdot 3}}right)left({frac {-x^{2}}{4cdot 5}}right)+(x)left({frac {-x^{2}}{2cdot 3}}right)left({frac {-x^{2}}{4cdot 5}}right)left({frac {-x^{2}}{6cdot 7}}right)+cdots end{aligned}}}

Euler's continued fraction formula can then be applied


x1−x22⋅31+−x22⋅3−x24⋅51+−x24⋅5−x26⋅71+−x26⋅7−{displaystyle {cfrac {x}{1-{cfrac {frac {-x^{2}}{2cdot 3}}{1+{frac {-x^{2}}{2cdot 3}}-{cfrac {frac {-x^{2}}{4cdot 5}}{1+{frac {-x^{2}}{4cdot 5}}-{cfrac {frac {-x^{2}}{6cdot 7}}{1+{frac {-x^{2}}{6cdot 7}}-ddots }}}}}}}}}{displaystyle {cfrac {x}{1-{cfrac {frac {-x^{2}}{2cdot 3}}{1+{frac {-x^{2}}{2cdot 3}}-{cfrac {frac {-x^{2}}{4cdot 5}}{1+{frac {-x^{2}}{4cdot 5}}-{cfrac {frac {-x^{2}}{6cdot 7}}{1+{frac {-x^{2}}{6cdot 7}}-ddots }}}}}}}}}

An equivalence transformation is used to clear the denominators:


sin⁡x=x1+x22⋅3−x2+2⋅3x24⋅5−x2+4⋅5x26⋅7−x2+⋱.{displaystyle sin x={cfrac {x}{1+{cfrac {x^{2}}{2cdot 3-x^{2}+{cfrac {2cdot 3x^{2}}{4cdot 5-x^{2}+{cfrac {4cdot 5x^{2}}{6cdot 7-x^{2}+ddots }}}}}}}}.}{displaystyle sin x={cfrac {x}{1+{cfrac {x^{2}}{2cdot 3-x^{2}+{cfrac {2cdot 3x^{2}}{4cdot 5-x^{2}+{cfrac {4cdot 5x^{2}}{6cdot 7-x^{2}+ddots }}}}}}}}.}

The same argument can be applied to the cosine function:



cos⁡x=∑n=0∞(−1)n(2n)!x2n=1−x22!+x44!−x66!+x88!−=1+−x22+(−x22)(−x23⋅4)+(−x22)(−x23⋅4)(−x25⋅6)+⋯=11−x221+−x22−x23⋅41+−x23⋅4−x25⋅61+−x25⋅6−{displaystyle {begin{aligned}cos x=sum _{n=0}^{infty }{frac {(-1)^{n}}{(2n)!}}x^{2n}&=1-{frac {x^{2}}{2!}}+{frac {x^{4}}{4!}}-{frac {x^{6}}{6!}}+{frac {x^{8}}{8!}}-cdots \[8pt]&=1+{frac {-x^{2}}{2}}+left({frac {-x^{2}}{2}}right)left({frac {-x^{2}}{3cdot 4}}right)+left({frac {-x^{2}}{2}}right)left({frac {-x^{2}}{3cdot 4}}right)left({frac {-x^{2}}{5cdot 6}}right)+cdots \[8pt]&={cfrac {1}{1-{cfrac {frac {-x^{2}}{2}}{1+{frac {-x^{2}}{2}}-{cfrac {frac {-x^{2}}{3cdot 4}}{1+{frac {-x^{2}}{3cdot 4}}-{cfrac {frac {-x^{2}}{5cdot 6}}{1+{frac {-x^{2}}{5cdot 6}}-ddots }}}}}}}}end{aligned}}}{displaystyle {begin{aligned}cos x=sum _{n=0}^{infty }{frac {(-1)^{n}}{(2n)!}}x^{2n}&=1-{frac {x^{2}}{2!}}+{frac {x^{4}}{4!}}-{frac {x^{6}}{6!}}+{frac {x^{8}}{8!}}-cdots \[8pt]&=1+{frac {-x^{2}}{2}}+left({frac {-x^{2}}{2}}right)left({frac {-x^{2}}{3cdot 4}}right)+left({frac {-x^{2}}{2}}right)left({frac {-x^{2}}{3cdot 4}}right)left({frac {-x^{2}}{5cdot 6}}right)+cdots \[8pt]&={cfrac {1}{1-{cfrac {frac {-x^{2}}{2}}{1+{frac {-x^{2}}{2}}-{cfrac {frac {-x^{2}}{3cdot 4}}{1+{frac {-x^{2}}{3cdot 4}}-{cfrac {frac {-x^{2}}{5cdot 6}}{1+{frac {-x^{2}}{5cdot 6}}-ddots }}}}}}}}end{aligned}}}

cos⁡x=11+x22−x2+2x23⋅4−x2+3⋅4x25⋅6−x2+⋱.{displaystyle therefore cos x={cfrac {1}{1+{cfrac {x^{2}}{2-x^{2}+{cfrac {2x^{2}}{3cdot 4-x^{2}+{cfrac {3cdot 4x^{2}}{5cdot 6-x^{2}+ddots }}}}}}}}.}{displaystyle therefore cos x={cfrac {1}{1+{cfrac {x^{2}}{2-x^{2}+{cfrac {2x^{2}}{3cdot 4-x^{2}+{cfrac {3cdot 4x^{2}}{5cdot 6-x^{2}+ddots }}}}}}}}.}



The inverse trigonometric functions


The inverse trigonometric functions can be represented as continued fractions.


sin−1⁡x=∑n=0∞(2n−1)!!(2n)!!⋅x2n+12n+1=x+(12)x33+(1⋅32⋅4)x55+(1⋅3⋅52⋅4⋅6)x77+⋯=x+x(x22⋅3)+x(x22⋅3)((3x)24⋅5)+x(x22⋅3)((3x)24⋅5)((5x)26⋅7)+⋯=x1−x22⋅31+x22⋅3−(3x)24⋅51+(3x)24⋅5−(5x)26⋅71+(5x)26⋅7−{displaystyle {begin{aligned}sin ^{-1}x=sum _{n=0}^{infty }{frac {(2n-1)!!}{(2n)!!}}cdot {frac {x^{2n+1}}{2n+1}}&=x+left({frac {1}{2}}right){frac {x^{3}}{3}}+left({frac {1cdot 3}{2cdot 4}}right){frac {x^{5}}{5}}+left({frac {1cdot 3cdot 5}{2cdot 4cdot 6}}right){frac {x^{7}}{7}}+cdots \[8pt]&=x+xleft({frac {x^{2}}{2cdot 3}}right)+xleft({frac {x^{2}}{2cdot 3}}right)left({frac {(3x)^{2}}{4cdot 5}}right)+xleft({frac {x^{2}}{2cdot 3}}right)left({frac {(3x)^{2}}{4cdot 5}}right)left({frac {(5x)^{2}}{6cdot 7}}right)+cdots \[8pt]&={cfrac {x}{1-{cfrac {frac {x^{2}}{2cdot 3}}{1+{frac {x^{2}}{2cdot 3}}-{cfrac {frac {(3x)^{2}}{4cdot 5}}{1+{frac {(3x)^{2}}{4cdot 5}}-{cfrac {frac {(5x)^{2}}{6cdot 7}}{1+{frac {(5x)^{2}}{6cdot 7}}-ddots }}}}}}}}end{aligned}}}{displaystyle {begin{aligned}sin ^{-1}x=sum _{n=0}^{infty }{frac {(2n-1)!!}{(2n)!!}}cdot {frac {x^{2n+1}}{2n+1}}&=x+left({frac {1}{2}}right){frac {x^{3}}{3}}+left({frac {1cdot 3}{2cdot 4}}right){frac {x^{5}}{5}}+left({frac {1cdot 3cdot 5}{2cdot 4cdot 6}}right){frac {x^{7}}{7}}+cdots \[8pt]&=x+xleft({frac {x^{2}}{2cdot 3}}right)+xleft({frac {x^{2}}{2cdot 3}}right)left({frac {(3x)^{2}}{4cdot 5}}right)+xleft({frac {x^{2}}{2cdot 3}}right)left({frac {(3x)^{2}}{4cdot 5}}right)left({frac {(5x)^{2}}{6cdot 7}}right)+cdots \[8pt]&={cfrac {x}{1-{cfrac {frac {x^{2}}{2cdot 3}}{1+{frac {x^{2}}{2cdot 3}}-{cfrac {frac {(3x)^{2}}{4cdot 5}}{1+{frac {(3x)^{2}}{4cdot 5}}-{cfrac {frac {(5x)^{2}}{6cdot 7}}{1+{frac {(5x)^{2}}{6cdot 7}}-ddots }}}}}}}}end{aligned}}}

An equivalence transformation yields


sin−1⁡x=x1−x22⋅3+x2−2⋅3(3x)24⋅5+(3x)2−4⋅5(5x2)6⋅7+(5x2)−.{displaystyle sin ^{-1}x={cfrac {x}{1-{cfrac {x^{2}}{2cdot 3+x^{2}-{cfrac {2cdot 3(3x)^{2}}{4cdot 5+(3x)^{2}-{cfrac {4cdot 5(5x^{2})}{6cdot 7+(5x^{2})-ddots }}}}}}}}.}{displaystyle sin ^{-1}x={cfrac {x}{1-{cfrac {x^{2}}{2cdot 3+x^{2}-{cfrac {2cdot 3(3x)^{2}}{4cdot 5+(3x)^{2}-{cfrac {4cdot 5(5x^{2})}{6cdot 7+(5x^{2})-ddots }}}}}}}}.}

The continued fraction for the inverse tangent is straightforward:


tan−1⁡x=∑n=0∞(−1)nx2n+12n+1=x−x33+x55−x77+⋯=x+x(−x23)+x(−x23)(−3x25)+x(−x23)(−3x25)(−5x27)+⋯=x1−x231+−x23−3x251+−3x25−5x271+−5x27−=x1+x23−x2+(3x)25−3x2+(5x)27−5x2+⋱.{displaystyle {begin{aligned}tan ^{-1}x=sum _{n=0}^{infty }(-1)^{n}{frac {x^{2n+1}}{2n+1}}&=x-{frac {x^{3}}{3}}+{frac {x^{5}}{5}}-{frac {x^{7}}{7}}+cdots \[8pt]&=x+xleft({frac {-x^{2}}{3}}right)+xleft({frac {-x^{2}}{3}}right)left({frac {-3x^{2}}{5}}right)+xleft({frac {-x^{2}}{3}}right)left({frac {-3x^{2}}{5}}right)left({frac {-5x^{2}}{7}}right)+cdots \[8pt]&={cfrac {x}{1-{cfrac {frac {-x^{2}}{3}}{1+{frac {-x^{2}}{3}}-{cfrac {frac {-3x^{2}}{5}}{1+{frac {-3x^{2}}{5}}-{cfrac {frac {-5x^{2}}{7}}{1+{frac {-5x^{2}}{7}}-ddots }}}}}}}}\[8pt]&={cfrac {x}{1+{cfrac {x^{2}}{3-x^{2}+{cfrac {(3x)^{2}}{5-3x^{2}+{cfrac {(5x)^{2}}{7-5x^{2}+ddots }}}}}}}}.end{aligned}}}{displaystyle {begin{aligned}tan ^{-1}x=sum _{n=0}^{infty }(-1)^{n}{frac {x^{2n+1}}{2n+1}}&=x-{frac {x^{3}}{3}}+{frac {x^{5}}{5}}-{frac {x^{7}}{7}}+cdots \[8pt]&=x+xleft({frac {-x^{2}}{3}}right)+xleft({frac {-x^{2}}{3}}right)left({frac {-3x^{2}}{5}}right)+xleft({frac {-x^{2}}{3}}right)left({frac {-3x^{2}}{5}}right)left({frac {-5x^{2}}{7}}right)+cdots \[8pt]&={cfrac {x}{1-{cfrac {frac {-x^{2}}{3}}{1+{frac {-x^{2}}{3}}-{cfrac {frac {-3x^{2}}{5}}{1+{frac {-3x^{2}}{5}}-{cfrac {frac {-5x^{2}}{7}}{1+{frac {-5x^{2}}{7}}-ddots }}}}}}}}\[8pt]&={cfrac {x}{1+{cfrac {x^{2}}{3-x^{2}+{cfrac {(3x)^{2}}{5-3x^{2}+{cfrac {(5x)^{2}}{7-5x^{2}+ddots }}}}}}}}.end{aligned}}}


A continued fraction for π


We can use the previous example involving the inverse tangent to construct a continued fraction representation of π. We note that


tan−1⁡(1)=π4,{displaystyle tan ^{-1}(1)={frac {pi }{4}},}{displaystyle tan ^{-1}(1)={frac {pi }{4}},}

And setting x = 1 in the previous result, we obtain immediately


π=41+122+322+522+722+⋱.{displaystyle pi ={cfrac {4}{1+{cfrac {1^{2}}{2+{cfrac {3^{2}}{2+{cfrac {5^{2}}{2+{cfrac {7^{2}}{2+ddots }}}}}}}}}}.,}pi ={cfrac  {4}{1+{cfrac  {1^{2}}{2+{cfrac  {3^{2}}{2+{cfrac  {5^{2}}{2+{cfrac  {7^{2}}{2+ddots }}}}}}}}}}.,


The hyperbolic functions


Recalling the relationship between the hyperbolic functions and the trigonometric functions,



sin⁡ix=isinh⁡x{displaystyle sin ix=isinh x}{displaystyle sin ix=isinh x}

cos⁡ix=cosh⁡x,{displaystyle cos ix=cosh x,}{displaystyle cos ix=cosh x,}


And that i2=−1,{displaystyle i^{2}=-1,}{displaystyle i^{2}=-1,} the following continued fractions are easily derived from the ones above:



sinh⁡x=x1−x22⋅3+x2−2⋅3x24⋅5+x2−4⋅5x26⋅7+x2−{displaystyle sinh x={cfrac {x}{1-{cfrac {x^{2}}{2cdot 3+x^{2}-{cfrac {2cdot 3x^{2}}{4cdot 5+x^{2}-{cfrac {4cdot 5x^{2}}{6cdot 7+x^{2}-ddots }}}}}}}}}{displaystyle sinh x={cfrac {x}{1-{cfrac {x^{2}}{2cdot 3+x^{2}-{cfrac {2cdot 3x^{2}}{4cdot 5+x^{2}-{cfrac {4cdot 5x^{2}}{6cdot 7+x^{2}-ddots }}}}}}}}}

cosh⁡x=11−x22+x2−2x23⋅4+x2−3⋅4x25⋅6+x2−.{displaystyle cosh x={cfrac {1}{1-{cfrac {x^{2}}{2+x^{2}-{cfrac {2x^{2}}{3cdot 4+x^{2}-{cfrac {3cdot 4x^{2}}{5cdot 6+x^{2}-ddots }}}}}}}}.}{displaystyle cosh x={cfrac {1}{1-{cfrac {x^{2}}{2+x^{2}-{cfrac {2x^{2}}{3cdot 4+x^{2}-{cfrac {3cdot 4x^{2}}{5cdot 6+x^{2}-ddots }}}}}}}}.}



The inverse hyperbolic functions


The inverse hyperbolic functions are related to the inverse trigonometric functions similar to how the hyperbolic functions are related to the trigonometric functions,



sin−1⁡ix=isinh−1⁡x{displaystyle sin ^{-1}ix=isinh ^{-1}x}{displaystyle sin ^{-1}ix=isinh ^{-1}x}

tan−1⁡ix=itanh−1⁡x,{displaystyle tan ^{-1}ix=itanh ^{-1}x,}{displaystyle tan ^{-1}ix=itanh ^{-1}x,}


And these continued fractions are easily derived:



sinh−1⁡x=x1+x22⋅3−x2+2⋅3(3x)24⋅5−(3x)2+4⋅5(5x2)6⋅7−(5x2)+⋱{displaystyle sinh ^{-1}x={cfrac {x}{1+{cfrac {x^{2}}{2cdot 3-x^{2}+{cfrac {2cdot 3(3x)^{2}}{4cdot 5-(3x)^{2}+{cfrac {4cdot 5(5x^{2})}{6cdot 7-(5x^{2})+ddots }}}}}}}}}{displaystyle sinh ^{-1}x={cfrac {x}{1+{cfrac {x^{2}}{2cdot 3-x^{2}+{cfrac {2cdot 3(3x)^{2}}{4cdot 5-(3x)^{2}+{cfrac {4cdot 5(5x^{2})}{6cdot 7-(5x^{2})+ddots }}}}}}}}}

tanh−1⁡x=x1−x23+x2−(3x)25+3x2−(5x)27+5x2−.{displaystyle tanh ^{-1}x={cfrac {x}{1-{cfrac {x^{2}}{3+x^{2}-{cfrac {(3x)^{2}}{5+3x^{2}-{cfrac {(5x)^{2}}{7+5x^{2}-ddots }}}}}}}}.}{displaystyle tanh ^{-1}x={cfrac {x}{1-{cfrac {x^{2}}{3+x^{2}-{cfrac {(3x)^{2}}{5+3x^{2}-{cfrac {(5x)^{2}}{7+5x^{2}-ddots }}}}}}}}.}



See also


  • List of topics named after Leonhard Euler


Notes




  1. ^ 1748 Leonhard Euler, Introductio in analysin infinitorum, Vol. I, Chapter 18.


  2. ^ (Wall, 1948, p. 17)


  3. ^ ab This series converges for |z| < 1, by Abel's test (applied to the series for log(1 − z)).



References


  • H. S. Wall, Analytic Theory of Continued Fractions, D. Van Nostrand Company, Inc., 1948; reprinted (1973) by Chelsea Publishing Company .mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
    ISBN 0-8284-0207-8.



Popular posts from this blog

Y

Mount Tamalpais

Indian Forest Service