Contraction mapping




Function reducing distance between all points

In mathematics, a contraction mapping, or contraction or contractor, on a metric space (M,d) is a function f from M to itself, with the property that there is some nonnegative real number 0≤k<1{displaystyle 0leq k<1}0leq k<1 such that for all x and y in M,


d(f(x),f(y))≤kd(x,y).{displaystyle d(f(x),f(y))leq k,d(x,y).}d(f(x),f(y))leq k,d(x,y).

The smallest such value of k is called the Lipschitz constant of f. Contractive maps are sometimes called Lipschitzian maps. If the above condition is instead satisfied for
k ≤ 1, then the mapping is said to be a non-expansive map.


More generally, the idea of a contractive mapping can be defined for maps between metric spaces. Thus, if (M,d) and (N,d') are two metric spaces, then f:M→N{displaystyle f:Mrightarrow N}f:Mrightarrow N is a contractive mapping if there is a constant k<1{displaystyle k<1}k<1 such that


d′(f(x),f(y))≤kd(x,y){displaystyle d'(f(x),f(y))leq k,d(x,y)}d'(f(x),f(y))leq k,d(x,y)

for all x and y in M.


Every contraction mapping is Lipschitz continuous and hence uniformly continuous (for a Lipschitz continuous function, the constant k is no longer necessarily less than 1).


A contraction mapping has at most one fixed point. Moreover, the Banach fixed-point theorem states that every contraction mapping on a nonempty complete metric space has a unique fixed point, and that for any x in M the iterated function sequence x, f (x), f (f (x)), f (f (f (x))), ... converges to the fixed point. This concept is very useful for iterated function systems where contraction mappings are often used. Banach's fixed-point theorem is also applied in proving the existence of solutions of ordinary differential equations, and is used in one proof of the inverse function theorem.[1]


Contraction mapping plays an important role in dynamic programming problems.[2][3]




Contents






  • 1 Firmly non-expansive mapping


  • 2 Subcontraction map


  • 3 Locally convex spaces


  • 4 See also


  • 5 References


  • 6 Further reading





Firmly non-expansive mapping


A non-expansive mapping with k=1{displaystyle k=1}k=1 can be strengthened to a firmly non-expansive mapping in a Hilbert space H if the following holds for all x and y in H:


f(x)−f(y)‖2≤x−y,f(x)−f(y)⟩.{displaystyle |f(x)-f(y)|^{2}leq ,langle x-y,f(x)-f(y)rangle .}|f(x)-f(y)|^{2}leq ,langle x-y,f(x)-f(y)rangle .

where


d(x,y)=‖x−y‖{displaystyle d(x,y)=|x-y|}d(x,y) = |x-y|

This is a special case of α{displaystyle alpha }alpha averaged nonexpansive operators with α=1/2{displaystyle alpha =1/2}alpha =1/2.[4] A firmly non-expansive mapping is always non-expansive, via the Cauchy–Schwarz inequality.



Subcontraction map


A subcontraction map or subcontractor is a map f on a metric space (M,d) such that



d(f(x),f(y))≤d(x,y) ;{displaystyle d(f(x),f(y))leq d(x,y) ;}d(f(x),f(y))leq d(x,y) ;

d(f(f(x)),f(x))<d(f(x),x)unlessx=f(x) .{displaystyle d(f(f(x)),f(x))<d(f(x),x)quad {text{unless}}quad x=f(x) .}d(f(f(x)),f(x))<d(f(x),x)quad {text{unless}}quad x=f(x) .


If the image of a subcontractor f is compact, then f has a fixed point.[5]



Locally convex spaces


In a locally convex space (E,P) with topology given by a set P of seminorms, one can define for any pP a p-contraction as a map f such that there is some kp < 1 such that p(f(x) - f(y)) ≤ kp p(x - y). If f is a p-contraction for all pP and (E,P) is sequentially complete, then f has a fixed point, given as limit of any sequence xn+1 = f(xn), and if (E,P) is Hausdorff, then the fixed point is unique.[6]



See also



  • Short map

  • Contraction (operator theory)

  • Transformation



References





  1. ^ Shifrin, Theodore (2005). Multivariable Mathematics. Wiley. pp. 244–260. ISBN 0-471-52638-X..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ Denardo, Eric V. (1967). "Contraction Mappings in the Theory Underlying Dynamic Programming". SIAM Review. 9 (2): 165–177. doi:10.1137/1009030.


  3. ^ Stokey, Nancy L.; Lucas, Robert E. (1989). Recursive Methods in Economic Dynamics. Cambridge: Harvard University Press. pp. 49–55. ISBN 0-674-75096-9.


  4. ^ Combettes, Patrick L. (2004). "Solving monotone inclusions via compositions of nonexpansive averaged operators". Optimization. 53 (5–6): 475–504. doi:10.1080/02331930412331327157.


  5. ^ Goldstein, A.A. (1967). Constructive real analysis. Harper’s Series in Modern Mathematics. New York-Evanston-London: Harper and Row. p. 17. Zbl 0189.49703.


  6. ^ Cain, G. L., Jr.; Nashed, M. Z. (1971). "Fixed Points and Stability for a Sum of Two Operators in Locally Convex Spaces". Pacific Journal of Mathematics. 39 (3): 581–592. doi:10.2140/pjm.1971.39.581.




Further reading




  • Istratescu, Vasile I. (1981). Fixed Point Theory : An Introduction. Holland: D.Reidel. ISBN 90-277-1224-7. provides an undergraduate level introduction.


  • Granas, Andrzej; Dugundji, James (2003). Fixed Point Theory. New York: Springer-Verlag. ISBN 0-387-00173-5.


  • Kirk, William A.; Sims, Brailey (2001). Handbook of Metric Fixed Point Theory. London: Kluwer Academic. ISBN 0-7923-7073-2.


  • Naylor, Arch W.; Sell, George R. (1982). Linear Operator Theory in Engineering and Science. Applied Mathematical Sciences. 40 (Second ed.). New York: Springer. pp. 125–134. ISBN 0-387-90748-3.




Popular posts from this blog

Y

Mount Tamalpais

Indian Forest Service