Arakelov theory




In mathematics, Arakelov theory (or Arakelov geometry) is an approach to Diophantine geometry, named for Suren Arakelov. It is used to study Diophantine equations in higher dimensions.




Contents






  • 1 Background


  • 2 Results


  • 3 Arithmetic Chow groups


  • 4 The arithmetic Riemann–Roch theorem


  • 5 See also


  • 6 Notes


  • 7 References


  • 8 External links





Background


Arakelov geometry studies a scheme X over the ring of integers Z, by putting Hermitian metrics on holomorphic vector bundles over X(C), the complex points of X. This extra Hermitian structure is applied as a substitute for the failure of the scheme Spec(Z) to be a complete variety.



Results


Arakelov (1974, 1975) defined an intersection theory on the arithmetic surfaces attached to smooth projective curves over number fields, with the aim of proving certain results, known in the case of function fields,
in the case of number fields. Gerd Faltings (1984) extended Arakelov's work by establishing results such as a Riemann-Roch theorem, a Noether formula, a Hodge index theorem and the nonnegativity of the self-intersection of the dualizing sheaf in this context.


Arakelov theory was used by Paul Vojta (1991) to give a new proof of the Mordell conjecture, and by Gerd Faltings (1991) in his proof of Serge Lang's generalization of the Mordell conjecture.


Pierre Deligne (1987) developed a more general framework to define the intersection pairing defined on an arithmetic surface over the spectrum of a ring of integers by Arakelov.


Arakelov's theory was generalized by Henri Gillet and Christophe Soulé to higher dimensions. That is, Gillet and Soulé defined an intersection pairing on an arithmetic variety. One of the main results of Gillet and Soulé is the arithmetic Riemann–Roch theorem of Gillet & Soulé (1992), an extension of the Grothendieck–Riemann–Roch theorem to arithmetic varieties.
For this one defines arithmetic Chow groups CHp(X) of an arithmetic variety X, and defines Chern classes for Hermitian vector bundles over X taking values in the arithmetic Chow groups.
The arithmetic Riemann–Roch theorem then describes how the Chern class behaves under pushforward of vector bundles under a proper map of arithmetic varieties. A complete proof of this theorem was only published recently by Gillet, Rössler and Soulé.


Arakelov's intersection theory for arithmetic surfaces was developed further by Jean-Benoît Bost (1999). The theory of Bost is based on the use of Green functions which, up to logarithmic singularities, belong to the Sobolev space L12{displaystyle L_{1}^{2}}{displaystyle L_{1}^{2}}. In this context Bost obtains an arithmetic Hodge index theorem and uses this to obtain Lefschetz theorems for arithmetic surfaces.



Arithmetic Chow groups


An arithmetic cycle of codimension p is a pair (Zg) where Z ∈ Zp(X) is a p-cycle on X and g is a Green current for Z, a higher-dimensional generalization of a Green function. The arithmetic Chow group CH^p(X){displaystyle {widehat {mathrm {CH} }}_{p}(X)}widehat {{mathrm  {CH}}}_{p}(X) of codimension p is the quotient of this group by the subgroup generated by certain "trivial" cycles.[1]



The arithmetic Riemann–Roch theorem


The usual Grothendieck–Riemann–Roch theorem describes how the Chern character ch behaves under pushforward of sheaves, and states that ch(f*(E))= f*(ch(E)TdX/Y), where f is a proper morphism from X to Y and E is a vector bundle over f. The arithmetic Riemann–Roch theorem is similar except that the Todd class gets multiplied by a certain power series.
The arithmetic Riemann–Roch theorem states


ch^(f∗([E]))=f∗(ch^(E)Td^R(TX/Y)){displaystyle {hat {mathrm {ch} }}(f_{*}([E]))=f_{*}({hat {mathrm {ch} }}(E){widehat {mathrm {Td} }}^{R}(T_{X/Y}))}{hat  {{mathrm  {ch}}}}(f_{*}([E]))=f_{*}({hat  {{mathrm  {ch}}}}(E)widehat {{mathrm  {Td}}}^{R}(T_{{X/Y}}))

where




  • X and Y are regular projective arithmetic schemes.


  • f is a smooth proper map from X to Y


  • E is an arithmetic vector bundle over X.


  • ch^{displaystyle {hat {mathrm {ch} }}}{hat  {{mathrm  {ch}}}} is the arithmetic Chern character.

  • TX/Y is the relative tangent bundle


  • Td^{displaystyle {hat {mathrm {Td} }}}{hat  {{mathrm  {Td}}}} is the arithmetic Todd class


  • Td^R(E){displaystyle {hat {mathrm {Td} }}^{R}(E)}{hat  {{mathrm  {Td}}}}^{R}(E) is Td^(E)(1−ϵ(R(E))){displaystyle {hat {mathrm {Td} }}(E)(1-epsilon (R(E)))}{hat  {{mathrm  {Td}}}}(E)(1-epsilon (R(E)))


  • R(X) is the additive characteristic class associated to the formal power series


m>0m oddXmm![2ζ(−m)+ζ(−m)(11+12+⋯+1m)].{displaystyle sum _{m>0 atop m{text{ odd}}}{frac {X^{m}}{m!}}left[2zeta ^{prime }(-m)+zeta (-m)left({1 over 1}+{1 over 2}+cdots +{1 over m}right)right].}sum _{{{m>0 atop m{text{ odd}}}}}{frac  {X^{m}}{m!}}left[2zeta ^{prime }(-m)+zeta (-m)left({1 over 1}+{1 over 2}+cdots +{1 over m}right)right].


See also


  • Hodge–Arakelov theory


Notes





  1. ^ Manin & Panchishkin (2008) pp.400–401




References




  • Arakelov, Suren J. (1974), "Intersection theory of divisors on an arithmetic surface", Math. USSR Izv., 8 (6): 1167–1180, doi:10.1070/IM1974v008n06ABEH002141, Zbl 0355.14002.mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  • Arakelov, Suren J. (1975), "Theory of intersections on an arithmetic surface", Proc. Internat. Congr. Mathematicians Vancouver, 1, Amer. Math. Soc., pp. 405–408, Zbl 0351.14003


  • Bost, Jean-Benoît (1999), "Potential theory and Lefschetz theorems for arithmetic surfaces", Annales Scientifiques de l'École Normale Supérieure, Série 4, 32 (2): 241–312, doi:10.1016/s0012-9593(99)80015-9, ISSN 0012-9593, Zbl 0931.14014


  • Deligne, P. (1987), "Le déterminant de la cohomologie", Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985) [The determinant of the cohomology], Contemporary Mathematics, 67, Providence, RI: American Mathematical Society, pp. 93–177, doi:10.1090/conm/067/902592, MR 0902592


  • Faltings, Gerd (1984), "Calculus on Arithmetic Surfaces", Annals of Mathematics, Second Series, 119 (2): 387–424, doi:10.2307/2007043, JSTOR 2007043


  • Faltings, Gerd (1991), "Diophantine Approximation on Abelian Varieties", Annals of Mathematics, Second Series, 133 (3): 549–576, doi:10.2307/2944319, JSTOR 2944319


  • Faltings, Gerd (1992), Lectures on the arithmetic Riemann–Roch theorem, Annals of Mathematics Studies, 127, Princeton, NJ: Princeton University Press, doi:10.1515/9781400882472, ISBN 0-691-08771-7, MR 1158661


  • Gillet, Henri; Soulé, Christophe (1992), "An arithmetic Riemann–Roch Theorem", Inventiones Mathematicae, 110: 473–543, doi:10.1007/BF01231343


  • Kawaguchi, Shu; Moriwaki, Atsushi; Yamaki, Kazuhiko (2002), "Introduction to Arakelov geometry", Algebraic geometry in East Asia (Kyoto, 2001), River Edge, NJ: World Sci. Publ., pp. 1–74, doi:10.1142/9789812705105_0001, ISBN 978-981-238-265-8, MR 2030448


  • Lang, Serge (1988), Introduction to Arakelov theory, New York: Springer-Verlag, doi:10.1007/978-1-4612-1031-3, ISBN 0-387-96793-1, MR 0969124, Zbl 0667.14001


  • Manin, Yu. I.; Panchishkin, A. A. (2007). Introduction to Modern Number Theory. Encyclopaedia of Mathematical Sciences. 49 (Second ed.). ISBN 978-3-540-20364-3. ISSN 0938-0396. Zbl 1079.11002.


  • Soulé, Christophe (2001) [1994], "A/a120240", in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4


  • Soulé, C.; with the collaboration of D. Abramovich, J.-F. Burnol and J. Kramer (1992), Lectures on Arakelov geometry, Cambridge Studies in Advanced Mathematics, 33, Cambridge: Cambridge University Press, pp. viii+177, doi:10.1017/CBO9780511623950, ISBN 0-521-41669-8, MR 1208731


  • Vojta, Paul (1991), "Siegel's Theorem in the Compact Case", Annals of Mathematics, Annals of Mathematics, Vol. 133, No. 3, 133 (3): 509–548, doi:10.2307/2944318, JSTOR 2944318



External links


  • Arakelov geometry preprint archive



Popular posts from this blog

Y

Mount Tamalpais

Indian Forest Service