Computational number theory

Multi tool use
In mathematics and computer science, computational number theory, also known as algorithmic number theory, is the study of algorithms for performing number theoretic computations.
See also
- Computational complexity of mathematical operations
- SageMath
- Number Theory Library
- PARI/GP
- Fast Library for Number Theory
Further reading
Eric Bach and Jeffrey Shallit, Algorithmic Number Theory, volume 1: Efficient Algorithms. MIT Press, 1996, .mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
ISBN 0-262-02405-5
D. M. Bressoud (1989). Factorisation and Primality Testing. Springer-Verlag. ISBN 0-387-97040-1.
Buhler, J.P.; P., Stevenhagen, eds. (2008). Algorithmic Number Theory: Lattices, Number Fields, Curves and Cryptography. MSRI Publications. 44. Cambridge University Press. ISBN 978-0-521-20833-8. Zbl 1154.11002.
Henri Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics 138, Springer-Verlag, 1993.
Richard Crandall and Carl Pomerance, Prime Numbers: A Computational Perspective, Springer-Verlag, 2001,
ISBN 0-387-94777-9
Riesel, Hans (1994). Prime Numbers and Computer Methods for Factorization. Progress in Mathematics. 126 (second ed.). Boston, MA: Birkhäuser. ISBN 0-8176-3743-5. Zbl 0821.11001.
Victor Shoup, A Computational Introduction to Number Theory and Algebra. Cambridge, 2005,
ISBN 0-521-85154-8
Samuel S. Wagstaff, Jr. (2013). The Joy of Factoring. Providence, RI: American Mathematical Society. ISBN 978-1-4704-1048-3.
Number-theoretic algorithms
|
Primality tests |
- AKS
- APR
- Baillie–PSW
- Elliptic curve
- Pocklington
- Fermat
- Lucas
- Lucas–Lehmer
- Lucas–Lehmer–Riesel
- Proth's theorem
- Pépin's
- Quadratic Frobenius
- Solovay–Strassen
- Miller–Rabin
|
Prime-generating |
- Sieve of Atkin
- Sieve of Eratosthenes
- Sieve of Sundaram
- Wheel factorization
|
Integer factorization |
- Continued fraction (CFRAC)
- Dixon's
- Lenstra elliptic curve (ECM)
- Euler's
- Pollard's rho
p − 1
p + 1
- Quadratic sieve (QS)
- General number field sieve (GNFS)
- Special number field sieve (SNFS)
- Rational sieve
- Fermat's
- Shanks's square forms
- Trial division
- Shor's
|
Multiplication |
- Ancient Egyptian
- Long
- Karatsuba
- Toom–Cook
- Schönhage–Strassen
- Fürer's
|
Discrete logarithm |
- Baby-step giant-step
- Pollard rho
- Pollard kangaroo
- Pohlig–Hellman
- Index calculus
- Function field sieve
|
Greatest common divisor |
- Binary
- Euclidean
- Extended Euclidean
- Lehmer's
|
Modular square root |
- Cipolla
- Pocklington's
- Tonelli–Shanks
|
Other algorithms |
- Chakravala
- Cornacchia
- LLL
- Integer square root
- Modular exponentiation
- Schoof's
|
Italics indicate that algorithm is for numbers of special forms
|
Xu5vJlmclpXvebBJ3VqK9sNJ7VVxxq53c4WaaF,xvm0aec8lv2gsKa f Help O51Gb5XKbFmCM1
Popular posts from this blog
This article is about the letter of the alphabet. For other uses, see Y (disambiguation). See also: Wye (disambiguation) Y Y y (See below) Usage Writing system Latin script Type Alphabetic and Logographic Language of origin Latin language Phonetic usage [ y ] [ ɨ ] [ j ] [ iː ] [ ɪ ] [ ɘ ] [ ə ] [ ɯ ] [ ɛː ] [ j ] [ ɥ ] [ ɣ̟ ] / w aɪ / / aɪ / Unicode value U+0059, U+0079 Alphabetical position 25 History Development Υ υ 𐌖 Y y Time period 54 to present Descendants • U • V • W • Ỿ • ¥ • Ꮙ • Ꮍ • Ꭹ Sisters F Ѵ У Ў Ұ Ү ו و ܘ וּ וֹ ࠅ 𐎆 𐡅 ወ વ ૂ ુ उ Variations (See below) Other Other letters commonly used with y(x), ly, ny This article contains IPA phonetic symbols. Without proper rendering support, you may see question marks, boxes, or other symbols instead of Unicode characters. For an introductory guide on IPA symbols, see Help:IPA. ISO basic Latin alphabet Aa Bb Cc D...
Mount Tamalpais Mount Tamalpais, viewed from the south Highest point Elevation 2,571 ft (784 m) NAVD 88 [1] Prominence 2,456 ft (749 m) [1] Listing California county high points 55th Coordinates 37°55′45″N 122°34′40″W / 37.929088°N 122.577829°W / 37.929088; -122.577829 Coordinates: 37°55′45″N 122°34′40″W / 37.929088°N 122.577829°W / 37.929088; -122.577829 [1] Geography Mount Tamalpais Marin County, California, U.S. Show map of California Mount Tamalpais Mount Tamalpais (the US) Show map of the US Parent range California Coast Ranges Topo map USGS San Rafael Geology Mountain type Sedimentary Climbing First ascent 1830s by Jacob P. Leese (first recorded ascent) [2] Easiest route Railroad Grade fire trail Mount Tamalpais ( / t æ m əl ˈ p aɪ . ɪ s / ; TAM -əl- PY -iss ; Coast Miwok: /t̪ɑmɑlˈpɑis̺/ , known locally as Mount Tam ) is a peak in Marin County, California, United State...
FMW Women's Championship Details Promotion Frontier Martial-Arts Wrestling [1] Date established November 5, 1990 [1] Date retired September 28, 1997 Other name(s) WWA World Women's Championship FMW Independent Women's Championship Statistics First champion(s) Combat Toyoda [1] Most reigns Megumi Kudo (6 reigns) [1] Longest reign Megumi Kudo (426 days) [1] Shortest reign Shark Tsuchiya (<1 day) [1] The FMW Women's Championship (or the FMW Independent Women's & WWA Women's Championship ) was two Japanese women's professional wrestling championships (WWA World Women's Championship and FMW Independent World Women's Championship) contested in the promotion Frontier Martial-Arts Wrestling (FMW). During the heyday of FMW, the female wrestlers wrestled in the same types of bloody death matches as the FMW men, and were feared by other Japanese female wrestlers for their toughness and intensity. ...