铈

Multi tool use
铈 58Ce
.mw-parser-output .Yuansuzhouqibiao_alkali{background-color:#ff6666}.mw-parser-output .Yuansuzhouqibiao_alkali_predicted{background-color:#ffa1a1}.mw-parser-output .Yuansuzhouqibiao_alkali_earth{background-color:#ffdead}.mw-parser-output .Yuansuzhouqibiao_alkali_earth_predicted{background-color:#ffecd3}.mw-parser-output .Yuansuzhouqibiao_lanthanide{background-color:#ffbfff}.mw-parser-output .Yuansuzhouqibiao_actinide{background-color:#ff99cc}.mw-parser-output .Yuansuzhouqibiao_superactinides{background-color:#b5c8ff}.mw-parser-output .Yuansuzhouqibiao_superactinides_predicted{background-color:#d1ddff}.mw-parser-output .Yuansuzhouqibiao_eka_superactinide{background-color:#a0e032}.mw-parser-output .Yuansuzhouqibiao_eka_superactinide_predicted{background-color:#c6dd9d}.mw-parser-output .Yuansuzhouqibiao_transition{background-color:#ffc0c0}.mw-parser-output .Yuansuzhouqibiao_transition_predicted{background-color:#ffe2e2}.mw-parser-output .Yuansuzhouqibiao_post_transition{background-color:#cccccc}.mw-parser-output .Yuansuzhouqibiao_post_transition_predicted{background-color:#dfdfdf}.mw-parser-output .Yuansuzhouqibiao_metalloid{background-color:#cccc99}.mw-parser-output .Yuansuzhouqibiao_metalloid_predicted{background-color:#e2e2aa}.mw-parser-output .Yuansuzhouqibiao_diatomic{background-color:#e7ff8f}.mw-parser-output .Yuansuzhouqibiao_diatomic_predicted{background-color:#F3FFC7}.mw-parser-output .Yuansuzhouqibiao_polyatomic{background-color:#a1ffc3}.mw-parser-output .Yuansuzhouqibiao_polyatomic_predicted{background-color:#d0ffe1}.mw-parser-output .Yuansuzhouqibiao_reactive_nonmetal{background-color:#a0ffa0}.mw-parser-output .Yuansuzhouqibiao_reactive_nonmetal_predicted{background-color:#d3ffd3}.mw-parser-output .Yuansuzhouqibiao_halogen{background-color:#ffff99}.mw-parser-output .Yuansuzhouqibiao_halogen_predicted{background-color:#ffffd6}.mw-parser-output .Yuansuzhouqibiao_noble_gas{background-color:#c0ffff}.mw-parser-output .Yuansuzhouqibiao_noble_gas_predicted{background-color:#ddffff}.mw-parser-output .Yuansuzhouqibiao_supercritical_atom{background-color:#f4f4c6}.mw-parser-output .Yuansuzhouqibiao_supercritical_atom_predicted{background-color:#f4f4c6}.mw-parser-output .Yuansuzhouqibiao_no_electron{background-color:#d0d0d0}.mw-parser-output .Yuansuzhouqibiao_s_block{background-color:#ff6699}.mw-parser-output .Yuansuzhouqibiao_s_block_predicted{background-color:#FBD}.mw-parser-output .Yuansuzhouqibiao_p_block{background-color:#99ccff}.mw-parser-output .Yuansuzhouqibiao_p_block_predicted{background-color:#CEF}.mw-parser-output .Yuansuzhouqibiao_d_block{background-color:#ccff99}.mw-parser-output .Yuansuzhouqibiao_d_block_predicted{background-color:#DFC}.mw-parser-output .Yuansuzhouqibiao_ds_block{background-color:#90ffb0}.mw-parser-output .Yuansuzhouqibiao_ds_block_predicted{background-color:#C7FFD7}.mw-parser-output .Yuansuzhouqibiao_f_block{background-color:#66ffcc}.mw-parser-output .Yuansuzhouqibiao_f_block_predicted{background-color:#BFE}.mw-parser-output .Yuansuzhouqibiao_g_block{background-color:#ffcc66}.mw-parser-output .Yuansuzhouqibiao_g_block_predicted{background-color:#FDA}.mw-parser-output .Yuansuzhouqibiao_h_block{background-color:#F0908C}.mw-parser-output .Yuansuzhouqibiao_h_block_predicted{background-color:#F0B6B4}.mw-parser-output .Yuansuzhouqibiao_unknown{background-color:#e8e8e8}.mw-parser-output .Yuansuzhouqibiao_error_type{background-color:#000000}.mw-parser-output .Yuansuzhouqibiao_null{background-color:inherit}.mw-parser-output .Yuansuzhouqibiao_maybe_not_exist{background-color:white}.mw-parser-output .Yuansuzhouqibiao_none_type{background-color:#c0c0c0}.mw-parser-output .Yuansuzhouqibiao_gas{color:green}.mw-parser-output .Yuansuzhouqibiao_liquid{color:blue}.mw-parser-output .Yuansuzhouqibiao_solid{color:black;font-weight:bold}.mw-parser-output .Yuansuzhouqibiao_unknow_phase{color:grey}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
– ↑ 铈 ↓ 钍
|
镧 ← 铈 → 镨
|
|
|
外觀 |
银白色

|
概況 |
名稱·符號·序數
|
铈(cerium)·Ce·58 |
元素類別 |
镧系元素
|
族·週期·區
|
不適用 ·6·f
|
標準原子質量 |
140.116(1) |
電子排布 |
[Xe] 4f1 5d1 6s2 2, 8, 18, 19, 9, 2
|
歷史 |
發現 |
马丁·克拉普罗特、永斯·贝采利乌斯、威廉·希辛格(1803年) |
分離 |
卡尔·古斯塔夫·莫桑德(1839年) |
物理性質 |
物態 |
固体
|
密度 |
(接近室温) 6.770 g·cm−3
|
熔點時液體密度 |
6.55 g·cm−3
|
熔點 |
1068 K,795 °C,1463 °F
|
沸點 |
3716 K,3443 °C,6229 °F
|
熔化熱 |
5.46 kJ·mol−1
|
汽化熱 |
398 kJ·mol−1
|
比熱容 |
26.94 J·mol−1·K−1
|
蒸汽壓
壓/Pa
|
1
|
10
|
100
|
1 k
|
10 k
|
100 k
|
溫/K
|
1992
|
2194
|
2442
|
2754
|
3159
|
3705
|
|
原子性質 |
氧化態 |
4, 3, 2, 1 ((a mildly basic oxide)) |
電負性 |
1.12(鲍林标度) |
電離能 |
第一:534.4 kJ·mol−1
第二:1050 kJ·mol−1
第三:1949 kJ·mol−1
(更多) |
原子半徑 |
181.8 pm
|
共價半徑 |
204±9 pm |
雜項 |
晶體結構 |
六方
β-Ce
面心立方
γ-Ce |
磁序 |
顺磁性
|
電阻率 |
β, poly: 828 nΩ·m
|
熱導率 |
11.3 W·m−1·K−1
|
膨脹係數 |
γ, poly: 6.3 µm/(m·K) |
聲速(細棒) |
(20 °C)2100 m·s−1
|
楊氏模量 |
γ form: 33.6 GPa |
剪切模量 |
γ form: 13.5 GPa |
體積模量 |
γ form: 21.5 GPa |
泊松比 |
γ form: 0.24 |
莫氏硬度 |
2.5 |
維氏硬度 |
210–470 MPa |
布氏硬度 |
186–412 MPa |
CAS號 |
7440-45-1 |
最穩定同位素 |
主条目:铈的同位素
同位素
|
丰度
|
半衰期 (t1/2)
|
衰變
|
方式
|
能量(MeV)
|
產物
|
134Ce
|
syn
|
3.16 d
|
ε
|
0.500
|
134La
|
136Ce
|
0.185%
|
>3.8×1016 y
|
β+β+
|
2.419
|
136Ba
|
138Ce
|
0.251%
|
>1.5×1014 y
|
β+β+
|
0.694
|
138Ba
|
139Ce
|
syn
|
137.640 d
|
ε
|
0.278
|
139La
|
140Ce
|
88.450%
|
穩定,帶82個中子
|
141Ce
|
syn
|
32.501 d
|
β−
|
0.581
|
141Pr
|
142Ce
|
11.114%
|
>5×1016 y
|
β−β−
|
1.417
|
142Nd
|
α
|
1.298
|
138Ba
|
144Ce
|
syn
|
284.893 d
|
β−
|
0.319
|
144Pr
|
|
铈(英语:Cerium)是一种化学元素,它的化学符号是Ce,它的原子序数是58,属于镧系元素,也是稀土元素之一。灰色软金属。在独居石中占稀土总量的40%以上。
化学性质活泼,在空气中用刀刮即着火,溶于酸,不溶于碱。
鈰的拉丁名稱Cerium是以小行星穀神星來命名的,另一種以小行星來命名的元素是鈀。
在1801年1月1日那晚,意大利的天文學家皮愛艾奇(Piazzi)在火星和木星之間的大間隙裡找到了一顆繞行太陽運行的新行星,為了維持行星以羅馬神明為名的傳統,這個天體就以農事女神之名命名為穀神星Ceres。麥片類食物的英文為cereal,也是源自於農事女神。穀神星發現的當年科學界頗為興奮,因此在穀神星發現後找到的第一個新元素,就命名為鈰cerium來向穀神星致敬。
性质
物理性质
铈是一种银白色的镧系金属,和铁的光泽类似,有延展性,比铁软。铈拥有所有元素中第二长的液态范围:2648℃(从795℃到3443℃)。(而錼是第一长的)。
铈在室温和大气压下为γ铈,低于16℃转变为β铈,而在-172℃则开始变换为α铈,在-269℃转变完成。α铈的密度为8.16。在大气压下,液态铈的密度比固态铈大。[1][2]
化学性质
铈在空气中缓慢[來源請求]被氧化,但在150℃迅速燃烧,生成二氧化铈:
- Ce + O2 → CeO2
铈的金属活动性较强,和冷水缓慢反应,和热水快速反应,生成氢氧化铈:
- 2 Ce (s) + 6 H2O (l) → 2 Ce(OH)3 (aq) + 3 H2 (g)
铈可以和所有卤素反应:
2 Ce (s) + 3 F2 (g) → 2 CeF3 (s) (白色)[來源請求]
- 2 Ce (s) + 3 Cl2 (g) → 2 CeCl3 (s) (白色)
- 2 Ce (s) + 3 Br2 (g) → 2 CeBr3 (s) (白色)
- 2 Ce (s) + 3 I2 (g) → 2 CeI3 (s) (黄色)
铈可以在稀硫酸中迅速溶解,生成无色的Ce3+,其存在形式为[Ce(H2O)9]3+:[3]
- 2 Ce (s) + 3 H2SO4 (aq) → 2 Ce3+ (aq) + 3 SO2−
4 (aq) + 3 H2 (g)
用途

鈰鐵合金在藉由摩擦後可引起火星,常作為打火石的主要成分。
氧化铈是最优质的玻璃抛光粉;铈可用作催化剂、电弧电极、特种玻璃等;硝酸铈用于制煤气灯上用的白热纱罩等。
铈在核工業中常用作δ相钚的穩定劑(添加量為0.9~1%質量分數)。
氧化铈的纳米粉末可以作为柴油添加剂,提高柴油发动机燃油效率,减少柴油发动机的排放。[4][5]
- Lu Le Laboratory 鈰鐵合金的起火影片
元素周期表
|
|
IA 1
|
IIA 2
|
|
IIIB 3
|
IVB 4
|
VB 5
|
VIB 6
|
VIIB 7
|
VIIIB 8
|
VIIIB 9
|
VIIIB 10
|
IB 11
|
IIB 12
|
IIIA 13
|
IVA 14
|
VA 15
|
VIA 16
|
VIIA 17
|
VIIIA 18
|
1
|
H
|
|
He
|
2
|
Li
|
Be
|
|
B
|
C
|
N
|
O
|
F
|
Ne
|
3
|
Na
|
Mg
|
|
Al
|
Si
|
P
|
S
|
Cl
|
Ar
|
4
|
K
|
Ca
|
|
Sc
|
Ti
|
V
|
Cr
|
Mn
|
Fe
|
Co
|
Ni
|
Cu
|
Zn
|
Ga
|
Ge
|
As
|
Se
|
Br
|
Kr
|
5
|
Rb
|
Sr
|
|
|
Y
|
Zr
|
Nb
|
Mo
|
Tc
|
Ru
|
Rh
|
Pd
|
Ag
|
Cd
|
In
|
Sn
|
Sb
|
Te
|
I
|
Xe
|
6
|
Cs
|
Ba
|
La
|
Ce
|
Pr
|
Nd
|
Pm
|
Sm
|
Eu
|
Gd
|
Tb
|
Dy
|
Ho
|
Er
|
Tm
|
Yb
|
Lu
|
Hf
|
Ta
|
W
|
Re
|
Os
|
Ir
|
Pt
|
Au
|
Hg
|
Tl
|
Pb
|
Bi
|
Po
|
At
|
Rn
|
7
|
Fr
|
Ra
|
Ac
|
Th
|
Pa
|
U
|
Np
|
Pu
|
Am
|
Cm
|
Bk
|
Cf
|
Es
|
Fm
|
Md
|
No
|
Lr
|
Rf
|
Db
|
Sg
|
Bh
|
Hs
|
Mt
|
Ds
|
Rg
|
Cn
|
Nh
|
Fl
|
Mc
|
Lv
|
Ts
|
Og
|
相關項目 |
化學元素 · 擴展元素週期表 · 同位素列表 · 地球的地殼元素豐度列表 · 元素列表
|
|
^ Stassis, C.; Gould, T.; McMasters, O.; Gschneidner, K.; Nicklow, R. Lattice and spin dynamics of γ-Ce. Physical Review B. 1979, 19 (11): 5746. doi:10.1103/PhysRevB.19.5746.
^ Patnaik, Pradyot. Handbook of Inorganic Chemical Compounds. McGraw-Hill. 2003: 199–200 [2009-06-06]. ISBN 0070494398.
^ Chemical reactions of Cerium. Webelements. [2009-06-06].
^ Barry Fox. Nano fuel additive enters efficiency trials. 15 October 2003.
^ Jung,Heejung; Kittelson, David B.; Zachariah, Michael R. The influence of a cerium additive on ultrafine diesel particle emissions and kinetics of oxidation. Combustion and Flame. 2005, 142 (3): 276–288. doi:10.1016/j.combustflame.2004.11.015.
FtC2M93NAaDing wqt7DFPg02QEnc eYU OwqMtHT,Q8d01G027eqwhTT,tgDxNl,sKTzBpQKQiKSZr6 NObgKWV,DVLpmRD51 iirvZQYR
Popular posts from this blog
This article is about the letter of the alphabet. For other uses, see Y (disambiguation). See also: Wye (disambiguation) Y Y y (See below) Usage Writing system Latin script Type Alphabetic and Logographic Language of origin Latin language Phonetic usage [ y ] [ ɨ ] [ j ] [ iː ] [ ɪ ] [ ɘ ] [ ə ] [ ɯ ] [ ɛː ] [ j ] [ ɥ ] [ ɣ̟ ] / w aɪ / / aɪ / Unicode value U+0059, U+0079 Alphabetical position 25 History Development Υ υ 𐌖 Y y Time period 54 to present Descendants • U • V • W • Ỿ • ¥ • Ꮙ • Ꮍ • Ꭹ Sisters F Ѵ У Ў Ұ Ү ו و ܘ וּ וֹ ࠅ 𐎆 𐡅 ወ વ ૂ ુ उ Variations (See below) Other Other letters commonly used with y(x), ly, ny This article contains IPA phonetic symbols. Without proper rendering support, you may see question marks, boxes, or other symbols instead of Unicode characters. For an introductory guide on IPA symbols, see Help:IPA. ISO basic Latin alphabet Aa Bb Cc D...
Mount Tamalpais Mount Tamalpais, viewed from the south Highest point Elevation 2,571 ft (784 m) NAVD 88 [1] Prominence 2,456 ft (749 m) [1] Listing California county high points 55th Coordinates 37°55′45″N 122°34′40″W / 37.929088°N 122.577829°W / 37.929088; -122.577829 Coordinates: 37°55′45″N 122°34′40″W / 37.929088°N 122.577829°W / 37.929088; -122.577829 [1] Geography Mount Tamalpais Marin County, California, U.S. Show map of California Mount Tamalpais Mount Tamalpais (the US) Show map of the US Parent range California Coast Ranges Topo map USGS San Rafael Geology Mountain type Sedimentary Climbing First ascent 1830s by Jacob P. Leese (first recorded ascent) [2] Easiest route Railroad Grade fire trail Mount Tamalpais ( / t æ m əl ˈ p aɪ . ɪ s / ; TAM -əl- PY -iss ; Coast Miwok: /t̪ɑmɑlˈpɑis̺/ , known locally as Mount Tam ) is a peak in Marin County, California, United State...
FMW Women's Championship Details Promotion Frontier Martial-Arts Wrestling [1] Date established November 5, 1990 [1] Date retired September 28, 1997 Other name(s) WWA World Women's Championship FMW Independent Women's Championship Statistics First champion(s) Combat Toyoda [1] Most reigns Megumi Kudo (6 reigns) [1] Longest reign Megumi Kudo (426 days) [1] Shortest reign Shark Tsuchiya (<1 day) [1] The FMW Women's Championship (or the FMW Independent Women's & WWA Women's Championship ) was two Japanese women's professional wrestling championships (WWA World Women's Championship and FMW Independent World Women's Championship) contested in the promotion Frontier Martial-Arts Wrestling (FMW). During the heyday of FMW, the female wrestlers wrestled in the same types of bloody death matches as the FMW men, and were feared by other Japanese female wrestlers for their toughness and intensity. ...