离子键





离子键又被称为盐键,是化学键的一种,通过两个或多个原子或化学基团失去或获得电子而成为离子后形成。带相反电荷的原子或基团之间存在静电吸引力,两个带相反电荷的原子或基团靠近时,周围水分子被释放为自由水中,带负电和带正电的原子或基团之间产生的静电吸引力以形成离子键。


此类化学键往往在金属与非金属间形成。失去电子的往往是金属元素的原子,而获得电子的往往是非金属元素的原子。带有相反电荷的离子因电磁力而相互吸引,从而形成化学键。离子键较氢键强,其强度与共价键接近。



Li+F⟶Li++F−{displaystyle {ce {Li + F -> Li+ + F-}}}{displaystyle {ce {Li + F -> Li+ + F-}}}

3Na+P⟶3Na++P3−{displaystyle {ce {3Na + P -> 3Na+ + P^3-}}}{displaystyle {ce {3Na + P -> 3Na+ + P^3-}}}


仅当总体的能级下降的时候,反应才会发生(由化学键联接的原子较自由原子有着较低的能级)。下降越多,形成的键越强。


现实中,原子间并不形成“纯”离子键。所有的键都或多或少带有共价键的成分。成键原子之间电平均程度越高,离子键成分越低。












Ionic bonding.png

Ionic bonding animation.gif


上图表示锂原子和氟原子的电子分布。锂原子只有一个外层电子,原子核对该电子的束缚十分弱(表现为其第一电离能很小)。而氟原子有7个外层电子。如果锂原子的外层电子进入氟原子的外层轨道,则两个原子就都有了类似惰性气体原子的电子分布。键能(源自两个带有相反电荷的离子因的电磁力的吸引作用)的存在(其值为负数)使得成键后的总体能量水平低于未成键的状态。




两个离子间的吸引(例如Na+{displaystyle {ce {Na+}}}{displaystyle {ce {Na+}}}Cl−{displaystyle {{ce {Cl-}}}}{displaystyle {ce {Cl-}}})形成离子键。电子轨道一般不会重叠(因而没有形成分子轨道),因为两个离子都达到了最低的能级,而键的形成完全(理想状态下)是因为正负离子间的电磁相互作用。




参见



  • 化学键

  • 共价键

  • 氢键

  • 二硫键








Popular posts from this blog

澳門輕軌系統

水泉澳邨

Indian Forest Service