完全格

Multi tool use
在数学中,完全格是在其中所有子集都有上确界(并)和下确界(交)的偏序集。完全格出现于数学和计算机科学的很多应用中。作为格的特殊实例,在序理论和泛代数中都有所研究。
完全格一定不能混淆于完全偏序(cpo),它构成严格的更加一般的一个偏序集合类别。更特殊的完全格是完全布尔代数和完全Heyting代数(locale)。
形式定义
偏序集合(L, ≤)是完全格,如果L的所有子集A在(L, ≤)中都有最大下界(下确界,交)和最小上界(上确界,并)二者。它们被表示为:
⋀{displaystyle bigwedge }
A(交)和⋁{displaystyle bigvee }
A(并)。
注意在A是空集的特殊情况下,L的任何元素都是空集的上界和下界,A的交将是L的最大元素。类似的,空集的并生成最小元素。因为定义还确保了二元交和并的存在,完全格因为形成了特殊种类的有界格。
上述定义的更多蕴涵在关于序理论中完备性性质的文章中讨论。
例子
- 给定集合的幂集,按包含排序。上确界给出自这些子集的并集而下确界给出自这些子集的交集。
单位区间[0,1]和扩展的实数轴,通过平常的全序和普通的上确界和下确界。实际上,全序集合(带有它的序拓扑)作为拓扑空间是紧致的,如果它作为一个格是完全的。
- 非负整数按整除排序。这个格最小元是1,因为它可以被任何其他数整除。可能令人惊奇的是,最大元是0,因为它可以被任何数整除。有限集合的上确界给出自最小公倍數而下确界给出自最大公约数。对于无限集合,上确界将总是0而下确界可以大于1。例如,所有偶数的集合有2作为最大公约数。如果从这个结构中去掉0它仍是格但不再是完全的。
- 任何给定群的子群在包含关系下。(尽管这里的下确界是平常的集合论交集,但子群的集合的上确界是子群的集合论并集所生成的子群,而不是集合论并集自身)。如果e是G的单位元,则平凡的群{e}是G的极小子群。而极大子群是群G自身。
模的子模按包含排序。上确界给出自子模的和而下确界给出自交集。
- 环的理想子环按包含排序。上确界给出自理想子环的和而下确界给出自交集。
拓扑空间的开集按包含排序。上确界给出自开集的并而下确界给出自交集的内部。
实数或复数的向量空间的凸集按包含排序。下确界给出自凸集的交集而上确界给出自并集的凸包。
- 在集合上拓扑按包含排序。下确界给出自拓扑的交集,而上确界给出自拓扑的并集所生成的拓扑。
- 在集合上的所有传递关系的格。
多重集的子多重集的格。
- 在集合上的所有等价关系的格;等价关系~被认为比≈更小(或"更细"),如果x~y总是蕴涵x≈y。
引用
参见
fz 4dQosvq wex Nct70GD9 B8B,dsG9t4PIdCgLa y2CcRq LR5eNgT Zup Ibb1sSN6K5p
Popular posts from this blog
This article is about the letter of the alphabet. For other uses, see Y (disambiguation). See also: Wye (disambiguation) Y Y y (See below) Usage Writing system Latin script Type Alphabetic and Logographic Language of origin Latin language Phonetic usage [ y ] [ ɨ ] [ j ] [ iː ] [ ɪ ] [ ɘ ] [ ə ] [ ɯ ] [ ɛː ] [ j ] [ ɥ ] [ ɣ̟ ] / w aɪ / / aɪ / Unicode value U+0059, U+0079 Alphabetical position 25 History Development Υ υ 𐌖 Y y Time period 54 to present Descendants • U • V • W • Ỿ • ¥ • Ꮙ • Ꮍ • Ꭹ Sisters F Ѵ У Ў Ұ Ү ו و ܘ וּ וֹ ࠅ 𐎆 𐡅 ወ વ ૂ ુ उ Variations (See below) Other Other letters commonly used with y(x), ly, ny This article contains IPA phonetic symbols. Without proper rendering support, you may see question marks, boxes, or other symbols instead of Unicode characters. For an introductory guide on IPA symbols, see Help:IPA. ISO basic Latin alphabet Aa Bb Cc D...
Mount Tamalpais Mount Tamalpais, viewed from the south Highest point Elevation 2,571 ft (784 m) NAVD 88 [1] Prominence 2,456 ft (749 m) [1] Listing California county high points 55th Coordinates 37°55′45″N 122°34′40″W / 37.929088°N 122.577829°W / 37.929088; -122.577829 Coordinates: 37°55′45″N 122°34′40″W / 37.929088°N 122.577829°W / 37.929088; -122.577829 [1] Geography Mount Tamalpais Marin County, California, U.S. Show map of California Mount Tamalpais Mount Tamalpais (the US) Show map of the US Parent range California Coast Ranges Topo map USGS San Rafael Geology Mountain type Sedimentary Climbing First ascent 1830s by Jacob P. Leese (first recorded ascent) [2] Easiest route Railroad Grade fire trail Mount Tamalpais ( / t æ m əl ˈ p aɪ . ɪ s / ; TAM -əl- PY -iss ; Coast Miwok: /t̪ɑmɑlˈpɑis̺/ , known locally as Mount Tam ) is a peak in Marin County, California, United State...
FMW Women's Championship Details Promotion Frontier Martial-Arts Wrestling [1] Date established November 5, 1990 [1] Date retired September 28, 1997 Other name(s) WWA World Women's Championship FMW Independent Women's Championship Statistics First champion(s) Combat Toyoda [1] Most reigns Megumi Kudo (6 reigns) [1] Longest reign Megumi Kudo (426 days) [1] Shortest reign Shark Tsuchiya (<1 day) [1] The FMW Women's Championship (or the FMW Independent Women's & WWA Women's Championship ) was two Japanese women's professional wrestling championships (WWA World Women's Championship and FMW Independent World Women's Championship) contested in the promotion Frontier Martial-Arts Wrestling (FMW). During the heyday of FMW, the female wrestlers wrestled in the same types of bloody death matches as the FMW men, and were feared by other Japanese female wrestlers for their toughness and intensity. ...