球對稱位勢





球對稱位勢乃是一種只與徑向距離有關的位勢。許多描述宇宙交互作用的基本位勢,像重力勢、電勢,都是球對稱位勢。這條目只講述,在量子力學裏,運動於球對稱位勢中的粒子的量子行為。這量子行為,可以用薛丁格方程式表達為



22μ+V(r)ψ=Eψ{displaystyle -{frac {hbar ^{2}}{2mu }}nabla ^{2}psi +V(r)psi =Epsi } - frac{hbar^2}{2mu}nabla^2psi + V(r)psi=Epsi

其中,{displaystyle hbar }hbar 是普朗克常數,μ{displaystyle mu }mu 是粒子的質量,ψ{displaystyle psi }psi 是粒子的波函數,V{displaystyle V}V是位勢,r{displaystyle r}r是徑向距離,E{displaystyle E}E是能量。


由於球對稱位勢V(r){displaystyle V(r)}V(r)只與徑向距離有關,與天頂角θ{displaystyle theta }theta 、方位角ϕ{displaystyle phi }phi 無關,為了便利分析,可以採用球坐標(r, θ, ϕ){displaystyle (r, theta , phi )}(r, theta , phi )來表達這問題的薛丁格方程式。然後,使用分離變數法,可以將薛丁格方程式分為兩部分,徑向部分與角部分。




目录






  • 1 薛丁格方程式


  • 2 角部分解答


  • 3 徑向部分解答


  • 4 實例


    • 4.1 真空狀況實例


      • 4.1.1 波函數歸一化導引




    • 4.2 球對稱的三維無限深方形位勢阱


      • 4.2.1 波函數歸一化導引




    • 4.3 三維均向諧振子


      • 4.3.1 導引


        • 4.3.1.1 轉換為广义拉盖尔方程式


        • 4.3.1.2 波函數歸一化






    • 4.4 類氫原子


      • 4.4.1 導引






  • 5 參閱


  • 6 參考文獻





薛丁格方程式


採用球坐標(r, θ, ϕ){displaystyle (r, theta , phi )}(r, theta , phi ),將拉普拉斯算子2{displaystyle nabla ^{2}}nabla^2展開:



22μr2{∂r(r2∂r)+1sin2⁡θ[sin⁡θθ(sin⁡θθ)+∂2∂ϕ2]}ψ+V(r)ψ=Eψ{displaystyle -{frac {hbar ^{2}}{2mu r^{2}}}left{{frac {partial }{partial r}}left(r^{2}{frac {partial }{partial r}}right)+{frac {1}{sin ^{2}theta }}left[sin theta {frac {partial }{partial theta }}left(sin theta {frac {partial }{partial theta }}right)+{frac {partial ^{2}}{partial phi ^{2}}}right]right}psi +V(r)psi =Epsi }-frac{hbar^2}{2mu r^2}left { frac{partial}{partial r}left(r^2 frac{partial}{partial r}right)+frac{1}{sin^2theta}left[sinthetafrac{partial}{partial theta}left(sintheta frac{partial}{partial theta}right)+frac{partial^2}{partial phi^2}right]right }psi +V(r)psi= Epsi

滿足薛丁格方程式的本徵函數ψ{displaystyle psi }psi 的形式為:



ψ(r, θ, ϕ)=R(r)Θ){displaystyle psi (r, theta , phi )=R(r)Theta (theta )Phi (phi )}psi (r, theta , phi )=R(r)Theta (theta )Phi (phi )

其中,R(r){displaystyle R(r)}R(r)Θ){displaystyle Theta (theta )}Theta(theta)Φ){displaystyle Phi (phi )}Phi(phi),都是函數。Θ){displaystyle Theta (theta )}Theta(theta)Φ){displaystyle Phi (phi )}Phi(phi)時常會合併為一個函數,稱為球諧函數,Ylm(θ, ϕ)=Θ){displaystyle Y_{lm}(theta , phi )=Theta (theta )Phi (phi )}Y_{{lm}}(theta , phi )=Theta (theta )Phi (phi )。這樣,本徵函數ψ{displaystyle psi }psi 的形式變為:



ψ(r, θ, ϕ)=R(r)Ylm(θ, ϕ){displaystyle psi (r, theta , phi )=R(r)Y_{lm}(theta , phi )}psi (r, theta , phi )=R(r)Y_{{lm}}(theta , phi )


角部分解答


參數為天頂角θ{displaystyle theta }theta 、方位角ϕ{displaystyle phi }phi 的球諧函數Ylm{displaystyle Y_{lm}}Y_{lm},滿足角部分方程式



1sin2⁡θ[sin⁡θθ(sin⁡θθ)+∂2∂ϕ2]Ylm(θ)=l(l+1)Ylm(θ){displaystyle -{frac {1}{sin ^{2}theta }}left[sin theta {frac {partial }{partial theta }}{Big (}sin theta {frac {partial }{partial theta }}{Big )}+{frac {partial ^{2}}{partial phi ^{2}}}right]Y_{lm}(theta ,phi )=l(l+1)Y_{lm}(theta ,phi )}-{frac {1}{sin ^{2}theta }}left[sin theta {frac {partial }{partial theta }}{Big (}sin theta {frac {partial }{partial theta }}{Big )}+{frac {partial ^{2}}{partial phi ^{2}}}right]Y_{lm}(theta ,phi )=l(l+1)Y_{lm}(theta ,phi )

其中,非負整數l{displaystyle l}l是角動量的角量子數m{displaystyle m}m(滿足l≤m≤l{displaystyle -lleq mleq l}-lleq mleq l)是角動量對於z-軸的(量子化的)投影。不同的l{displaystyle l}lm{displaystyle m}m給予不同的球諧函數解答Ylm{displaystyle Y_{lm}}Y_{lm}



Ylm(θ, ϕ)=(i)m+|m|(2l+1)4π(l−|m|)!(l+|m|)!Plm(cos⁡θ)eimϕ{displaystyle Y_{lm}(theta , phi )=(i)^{m+|m|}{sqrt {{(2l+1) over 4pi }{(l-|m|)! over (l+|m|)!}}},P_{lm}(cos {theta }),e^{imphi }}{displaystyle Y_{lm}(theta , phi )=(i)^{m+|m|}{sqrt {{(2l+1) over 4pi }{(l-|m|)! over (l+|m|)!}}},P_{lm}(cos {theta }),e^{imphi }}

其中,i{displaystyle i}i是虛數單位,Plm(cos⁡θ){displaystyle P_{lm}(cos {theta })}P_{lm}(cos {theta })是伴隨勒讓德多項式,用方程式定義為



Plm(x)=(1−x2)|m|/2 d|m|dx|m|Pl(x){displaystyle P_{lm}(x)=(1-x^{2})^{|m|/2} {frac {d^{|m|}}{dx^{|m|}}}P_{l}(x)}P_{{lm}}(x)=(1-x^{2})^{{|m|/2}} {frac  {d^{{|m|}}}{dx^{{|m|}}}}P_{l}(x)

Pl(x){displaystyle P_{l}(x)}P_{l}(x)l{displaystyle l}l階勒讓德多項式,可用羅德里格公式表示為



Pl(x)=12ll!dldxl(x2−1)l{displaystyle P_{l}(x)={1 over 2^{l}l!}{d^{l} over dx^{l}}(x^{2}-1)^{l}}P_{l}(x)={1 over 2^{l}l!}{d^{l} over dx^{l}}(x^{2}-1)^{l}


徑向部分解答


將角部分解答代入薛丁格方程式,則可得到一個一維的二階微分方程式:



{−22μr2ddr(r2ddr)+ℏ2l(l+1)2μr2+V(r)}R(r)=ER(r){displaystyle left{-{hbar ^{2} over 2mu r^{2}}{d over dr}left(r^{2}{d over dr}right)+{hbar ^{2}l(l+1) over 2mu r^{2}}+V(r)right}R(r)=ER(r)}left { - {hbar^2 over 2mu  r^2} {dover dr}left(r^2{dover dr}right) +{hbar^2 l(l+1)over 2mu r^2}+V(r) right } R(r)=ER(r)(1)

設定函數u(r)=rR(r){displaystyle u(r)=rR(r)}u(r)=r R(r)。代入方程式(1)。經過一番繁雜的運算,可以得到



22μd2u(r)dr2+ℏ2l(l+1)2μr2u(r)+V(r)u(r)=Eu(r){displaystyle -{hbar ^{2} over 2mu }{d^{2}u(r) over dr^{2}}+{hbar ^{2}l(l+1) over 2mu r^{2}}u(r)+V(r)u(r)=Eu(r)} - {hbar^2 over 2mu  } {d^2 u(r)over dr^2} +{hbar^2 l(l+1)over 2mu r^2}u(r)+V(r) u(r)=Eu(r)(2)

徑向方程式變為



22μd2u(r)dr2+Veff(r)u(r)=Eu(r){displaystyle -{hbar ^{2} over 2mu }{d^{2}u(r) over dr^{2}}+V_{mathrm {eff} }(r)u(r)=Eu(r)}-{hbar^2 over 2mu } {d^2 u(r) over dr^2} + V_{mathrm{eff}}(r) u(r) = E u(r)(3)

其中,有效位勢Veff(r)=V(r)+ℏ2l(l+1)2μr2{displaystyle V_{mathrm {eff} }(r)=V(r)+{frac {hbar ^{2}l(l+1)}{2mu r^{2}}}}V_{mathrm{eff}}(r)=V(r)+frac{hbar^2 l(l+1)}{2mu r^2}


這正是函數為u(r){displaystyle u(r)}u(r),有效位勢為Veff{displaystyle V_{mathrm {eff} }}V_{mathrm{eff}}的薛丁格方程式。徑向距離r{displaystyle r}r的定義域是從0{displaystyle 0}{displaystyle 0}{displaystyle infty }infty。新加入有效位勢的項目,稱為離心位勢。


為了要更進一步解析方程式(2),必須知道位勢的形式。不同的位勢有不同的解答。



實例


在這裏,有四個很特別、很重要的實例。這些實例都有一個共同點,那就是,它們的位勢都是球對稱的。因此,它們的角部分解答都是球諧函數。這四個實例是:




  1. V(r)=0{displaystyle V(r)=0}V(r)=0:原方程變為亥姆霍兹方程(∇2+2μEℏ2)A=0{displaystyle (nabla ^{2}+{frac {2mu E}{hbar ^{2}}})A=0}{displaystyle (nabla ^{2}+{frac {2mu E}{hbar ^{2}}})A=0},使用球諧函數為正交歸一基,解析眞空狀況實例。這實例可以做為別的實例的基礎。

  2. r<r0{displaystyle r<r_{0}}r<r_{0}時,V(r)=0{displaystyle V(r)=0}V(r)=0;否則,V(r)=∞{displaystyle V(r)=infty }V(r)=infty :這實例比第一個實例複雜一點,可以描述三維的圓球形盒子中的粒子的量子行為。


  3. V(r)∝r2{displaystyle V(r)propto r^{2}}V(r)propto r^{2}:研討三維均向性諧振子的實例。在量子力學裏,是少數幾個存在簡單的解析解的量子模型。


  4. V(r)∝1/r{displaystyle V(r)propto 1/r}V(r)propto 1/r:關於類氫原子的束縛態的實例,也有簡單的解析解。



真空狀況實例


思考V(r)=0{displaystyle V(r)=0}V(r)=0的狀況,設定k =def 2μEℏ2{displaystyle k {stackrel {mathrm {def} }{=}} {sqrt {2mu E over hbar ^{2}}}}k {stackrel  {{mathrm  {def}}}{=}} {sqrt  {2mu E over hbar ^{2}}},在設定無因次的變數



ρ =def kr{displaystyle rho {stackrel {mathrm {def} }{=}} kr}rho  {stackrel  {{mathrm  {def}}}{=}} kr

代入方程式(2),定義J(ρ) =def ρR(r){displaystyle J(rho ) {stackrel {mathrm {def} }{=}} {sqrt {rho }}R(r)}J(rho ) {stackrel  {{mathrm  {def}}}{=}} {sqrt  {rho }}R(r),就會得到貝塞爾方程式,一個二階常微分方程式:



ρ2d2Jdρ2+ρdJdρ+[ρ2−(l+12)2]J=0{displaystyle rho ^{2}{d^{2}J over drho ^{2}}+rho {dJ over drho }+left[rho ^{2}-left(l+{frac {1}{2}}right)^{2}right]J=0}rho ^{2}{d^{2}J over drho ^{2}}+rho {dJ over drho }+left[rho ^{2}-left(l+{frac  {1}{2}}right)^{2}right]J=0

貝塞爾方程式的解答是第一類貝塞爾函數Jl+1/2(ρ){displaystyle J_{l+1/2}(rho )}J_{{l+1/2}}(rho );而R(r){displaystyle R(r)}R(r)是第一類球貝塞爾函數
(真空解的邊界條件要求原點的函數值有限,因此在原點趨於無窮的第二類球貝塞爾函數項的係數必須為零):



R(r)=jl(kr) =def π/(2kr)Jl+1/2(kr){displaystyle R(r)=j_{l}(kr) {stackrel {mathrm {def} }{=}} {sqrt {pi /(2kr)}}J_{l+1/2}(kr)}R(r)=j_{l}(kr) {stackrel  {{mathrm  {def}}}{=}} {sqrt  {pi /(2kr)}}J_{{l+1/2}}(kr)(4)

在眞空裏,一個粒子的薛丁格方程(即自由空間中的齊次亥姆霍兹方程)的解,以球坐標來表達,是球貝塞爾函數與球諧函數的乘積:



ψ(r, θ, ϕ)=Akljl(kr)Ylm(θ){displaystyle psi (r, theta , phi )=A_{kl}j_{l}(kr)Y_{lm}(theta ,phi )}psi (r, theta , phi )=A_{{kl}}j_{l}(kr)Y_{{lm}}(theta ,phi )

其中,歸一常數Akl=2πk{displaystyle A_{kl}={sqrt {frac {2}{pi }}},k}A_{{kl}}={sqrt  {{frac  {2}{pi }}}},kl{displaystyle l}l是非負整數,m{displaystyle m}m是整數,l≤m≤l{displaystyle -lleq mleq l}-lleq mleq lk{displaystyle k}k是實數,k≥0{displaystyle kgeq 0}kgeq 0


這些解答都是角動量確定態的波函數。這些確定態都有明確的角動量。



波函數歸一化導引


波函數的角部分已經歸一化,剩下來必須將徑向部分歸一化。徑向函數的歸一化條件為



1=Akl2∫0∞ r2jl2(kr) dr{displaystyle 1=A_{kl}^{2}int _{0}^{infty } r^{2}j_{l}^{2}(kr) dr}1=A_{{kl}}^{2}int _{0}^{{infty }} r^{2}j_{l}^{2}(kr) dr

根據球貝塞爾函數的封閉方程式,



0∞ x2jα(k1x)jα(k2x) dx=π2k12δ(k1−k2){displaystyle int _{0}^{infty } x^{2}j_{alpha }(k_{1}x)j_{alpha }(k_{2}x) dx={frac {pi }{2k_{1}^{2}}}delta (k_{1}-k_{2})}int _{0}^{{infty }} x^{2}j_{{alpha }}(k_{1}x)j_{{alpha }}(k_{2}x) dx={frac  {pi }{2k_{1}^{2}}}delta (k_{1}-k_{2})

其中,α>0{displaystyle alpha >0}alpha >0δk{displaystyle delta _{k}}delta _{{k}}为克罗内克δ。


所以,1=Akl2π2k2{displaystyle 1=A_{kl}^{2}{frac {pi }{2k^{2}}}}1=A_{{kl}}^{2}{frac  {pi }{2k^{2}}}。取平方根,歸一常數Akl=2πk{displaystyle A_{kl}={sqrt {frac {2}{pi }}},k}A_{{kl}}={sqrt  {{frac  {2}{pi }}}},k



球對稱的三維無限深方形位勢阱




球貝塞爾函數jl(x){displaystyle j_{l}(x)}j_{l}(x)


思考一個球對稱的無限深方形阱,阱內位勢為0,阱外位勢為無限大。用方程式表達:



V(r)={0,if r≤r0∞,if r>r0{displaystyle V(r)={begin{cases}0,&{mbox{if }}rleq r_{0}\infty ,&{mbox{if }}r>r_{0}end{cases}}}V(r)={begin{cases}0,&{mbox{if }}rleq r_{0}\infty ,&{mbox{if }}r>r_{0}end{cases}}

其中,r0{displaystyle r_{0}}r_{0}是球對稱阱的半徑。


立刻,可以察覺,阱外的波函數是0;而由於阱內的薛丁格方程式與真空狀況的薛丁格方程式相同,波函數是球貝塞爾函數R(r)=jl(kr){displaystyle R(r)=j_{l}(kr)}R(r)=j_{l}(kr)。為了滿足邊界條件,波函數必須是連續的。匹配阱內與阱外的波函數,球貝塞爾函數在徑向坐標r=r0{displaystyle r=r_{0}}r=r_{0}之處必須等於0:



jl(kr0)=0{displaystyle j_{l}(kr_{0})=0}j_{l}(kr_{0})=0

設定ξnl{displaystyle xi _{nl}}xi _{{nl}}l{displaystyle l}l階球貝塞爾函數jl{displaystyle j_{l}}j_{l}的第n{displaystyle n}n個0點,則knlr0=ξnl{displaystyle k_{nl}r_{0}=xi _{nl}}k_{{nl}}r_{0}=xi _{{nl}}


那麼,離散的能級Enl{displaystyle E_{nl}}E_{{nl}}



Enl=ℏ2knl22μ=ℏnl22μr02{displaystyle E_{nl}={frac {hbar ^{2}k_{nl}^{2}}{2mu }}={frac {hbar ^{2}xi _{nl}^{2}}{2mu r_{0}^{2}}}}E_{{nl}}={frac  {hbar ^{2}k_{{nl}}^{2}}{2mu }}={frac  {hbar ^{2}xi _{{nl}}^{2}}{2mu r_{0}^{2}}}

薛丁格方程式的整個解答是



ψnlm(r, θ, ϕ)=Anljl(ξnlr/r0)Ylm(θ, ϕ){displaystyle psi _{nlm}(r, theta , phi )=A_{nl}j_{l}(xi _{nl},r/r_{0}),Y_{lm}(theta , phi )}psi _{{nlm}}(r, theta , phi )=A_{{nl}}j_{l}(xi _{{nl}},r/r_{0}),Y_{{lm}}(theta , phi )

其中,歸一常數Anl=(2r03)1/21jl+1(ξnl){displaystyle A_{nl}=left({frac {2}{r_{0}^{3}}}right)^{1/2}{frac {1}{j_{l+1}(xi _{nl})}}}A_{{nl}}=left({frac  {2}{r_{0}^{3}}}right)^{{1/2}}{frac  {1}{j_{{l+1}}(xi _{{nl}})}}



波函數歸一化導引


波函數的角部分已經歸一化,剩下來必須將徑向部分歸一化。徑向函數的歸一化條件為



1=Anl2∫0r0 r2jl2(knlr) dr{displaystyle 1=A_{nl}^{2}int _{0}^{r_{0}} r^{2}j_{l}^{2}(k_{nl}r) dr}1=A_{{nl}}^{2}int _{0}^{{r_{0}}} r^{2}j_{l}^{2}(k_{{nl}}r) dr

將球貝塞爾函數與第一類貝塞爾函數的關係方程式(4)代入積分:



1=Anl2∫0r0 r2 π2knlr Jl+1/22(knlr) dr=Anl2π2knl∫0r0 rJl+1/22(knlr) dr{displaystyle 1=A_{nl}^{2}int _{0}^{r_{0}} r^{2} {frac {pi }{2k_{nl}r}} J_{l+1/2}^{2}(k_{nl}r) dr=A_{nl}^{2}{frac {pi }{2k_{nl}}}int _{0}^{r_{0}} rJ_{l+1/2}^{2}(k_{nl}r) dr}1=A_{{nl}}^{2}int _{0}^{{r_{0}}} r^{2} {frac  {pi }{2k_{{nl}}r}} J_{{l+1/2}}^{2}(k_{{nl}}r) dr=A_{{nl}}^{2}{frac  {pi }{2k_{{nl}}}}int _{0}^{{r_{0}}} rJ_{{l+1/2}}^{2}(k_{{nl}}r) dr

設定變數x=r/r0{displaystyle x=r/r_{0}}x=r/r_{0},代入積分:



1=Anl2πr022knl∫01 xJl+1/22(knlr0x) dx=Anl2πr032ξnl∫01 xJl+1/22(ξnlx) dx{displaystyle 1=A_{nl}^{2}{frac {pi r_{0}^{2}}{2k_{nl}}}int _{0}^{1} xJ_{l+1/2}^{2}(k_{nl}r_{0}x) dx=A_{nl}^{2}{frac {pi r_{0}^{3}}{2xi _{nl}}}int _{0}^{1} xJ_{l+1/2}^{2}(xi _{nl}x) dx}1=A_{{nl}}^{2}{frac  {pi r_{0}^{2}}{2k_{{nl}}}}int _{0}^{{1}} xJ_{{l+1/2}}^{2}(k_{{nl}}r_{0}x) dx=A_{{nl}}^{2}{frac  {pi r_{0}^{3}}{2xi _{{nl}}}}int _{0}^{{1}} xJ_{{l+1/2}}^{2}(xi _{{nl}}x) dx

根據貝塞爾函數的正交歸一性方程式,



01xJα(xξ)Jα(xξ)dx=δmn2Jα+1(ξ)2{displaystyle int _{0}^{1}xJ_{alpha }(xxi _{malpha })J_{alpha }(xxi _{nalpha })dx={frac {delta _{mn}}{2}}J_{alpha +1}(xi _{nalpha })^{2}}int _{0}^{1}xJ_{alpha }(xxi _{{malpha }})J_{alpha }(xxi _{{nalpha }})dx={frac  {delta _{{mn}}}{2}}J_{{alpha +1}}(xi _{{nalpha }})^{2}

其中,α>−1{displaystyle alpha >-1}alpha >-1δmn{displaystyle delta _{mn}}delta _{{mn}}为克罗内克δ,ξ{displaystyle xi _{nalpha }}xi _{{nalpha }}表示(x){displaystyle J_{alpha }(x)}J_{alpha }(x)的第n{displaystyle n}n個0點。


注意到jl(x){displaystyle j_{l}(x)}j_{l}(x)的第n{displaystyle n}n個0點ξnl{displaystyle xi _{nl}}xi _{{nl}}也是Jl+1/2(x){displaystyle J_{l+1/2}(x)}J_{{l+1/2}}(x)的第n{displaystyle n}n個0點。所以,



1=Anl2 πr034ξnl Jl+3/22(ξnl)=Anl2 r032 jl+12(ξnl){displaystyle 1=A_{nl}^{2} {frac {pi r_{0}^{3}}{4xi _{nl}}} J_{l+3/2}^{2}(xi _{nl})=A_{nl}^{2} {frac {r_{0}^{3}}{2}} j_{l+1}^{2}(xi _{nl})}1=A_{{nl}}^{2} {frac  {pi r_{0}^{3}}{4xi _{{nl}}}} J_{{l+3/2}}^{2}(xi _{{nl}})=A_{{nl}}^{2} {frac  {r_{0}^{3}}{2}} j_{{l+1}}^{2}(xi _{{nl}})

取平方根,歸一常數Anl=(2r03)1/21jl+1(ξnl){displaystyle A_{nl}=left({frac {2}{r_{0}^{3}}}right)^{1/2}{frac {1}{j_{l+1}(xi _{nl})}}}A_{{nl}}=left({frac  {2}{r_{0}^{3}}}right)^{{1/2}}{frac  {1}{j_{{l+1}}(xi _{{nl}})}}



三維均向諧振子



三維均向諧振子的位勢為



V(r)=12μω2r2{displaystyle V(r)={tfrac {1}{2}}mu omega ^{2}r^{2}}V(r)={tfrac  {1}{2}}mu omega ^{2}r^{2}

其中,ω{displaystyle omega }omega 是角頻率。


用階梯算符的方法,可以證明N維諧振子的能量是



En=ℏω(n+N2)withn=0,1,…,∞,{displaystyle E_{n}=hbar omega (n+{tfrac {N}{2}})quad {hbox{with}}quad n=0,1,ldots ,infty ,}E_{n}=hbar omega (n+{tfrac  {N}{2}})quad {hbox{with}}quad n=0,1,ldots ,infty ,

所以,三維均向諧振子的徑向薛丁格方程式是



[−22μd2dr2+ℏ2l(l+1)2μr2+12μω2r2−ω(n+32)]u(r)=0{displaystyle left[-{hbar ^{2} over 2mu }{d^{2} over dr^{2}}+{hbar ^{2}l(l+1) over 2mu r^{2}}+{frac {1}{2}}mu omega ^{2}r^{2}-hbar omega (n+{frac {3}{2}})right]u(r)=0}left[-{hbar ^{2} over 2mu }{d^{2} over dr^{2}}+{hbar ^{2}l(l+1) over 2mu r^{2}}+{frac  {1}{2}}mu omega ^{2}r^{2}-hbar omega (n+{frac  {3}{2}})right]u(r)=0(5)

設定常數γ{displaystyle gamma }gamma



γμω{displaystyle gamma equiv {frac {mu omega }{hbar }}}gamma equiv {frac  {mu omega }{hbar }}

回想u(r)=rR(r){displaystyle u(r)=rR(r)}u(r)=rR(r),則徑向薛丁格方程式有一個歸一化的解答:



Rnl(r)=Nnlrle−12γr2L12(n−l)(l+12)(γr2){displaystyle R_{nl}(r)=N_{nl},r^{l},e^{-{frac {1}{2}}gamma r^{2}};L_{{frac {1}{2}}(n-l)}^{(l+{frac {1}{2}})}(gamma r^{2})}R_{{nl}}(r)=N_{{nl}},r^{{l}},e^{{-{frac  {1}{2}}gamma r^{2}}};L_{{{frac  {1}{2}}(n-l)}}^{{(l+{frac  {1}{2}})}}(gamma r^{2})

其中,函數Lk(α)(γr2){displaystyle L_{k}^{(alpha )}(gamma r^{2})}L_{k}^{{(alpha )}}(gamma r^{2})是广义拉盖尔多项式,Nnl{displaystyle N_{nl}}N_{{nl}}是歸一化常數:



Nnl=[2n+l+2γl+32π12]12[[12(n−l)]![12(n+l)]!(n+l+1)!]12{displaystyle N_{nl}=left[{frac {2^{n+l+2},gamma ^{l+{frac {3}{2}}}}{pi ^{frac {1}{2}}}}right]^{frac {1}{2}}left[{frac {[{frac {1}{2}}(n-l)]!;[{frac {1}{2}}(n+l)]!}{(n+l+1)!}}right]^{frac {1}{2}}}N_{{nl}}=left[{frac  {2^{{n+l+2}},gamma ^{{l+{frac  {3}{2}}}}}{pi ^{{{frac  {1}{2}}}}}}right]^{{{frac  {1}{2}}}}left[{frac  {[{frac  {1}{2}}(n-l)]!;[{frac  {1}{2}}(n+l)]!}{(n+l+1)!}}right]^{{{frac  {1}{2}}}}

本徵能級En{displaystyle E_{n}}E_n的本徵函數Rnl{displaystyle R_{nl}}R_{{nl}},乘以球諧函數Ylm(θ){displaystyle Y_{lm}(theta ,phi )}Y_{{lm}}(theta ,phi ),就是薛丁格方程式的整個解答:



ψnlm=Rnl(r)Ylm(θ, ϕ){displaystyle psi _{nlm}=R_{nl}(r),Y_{lm}(theta , phi )}psi _{{nlm}}=R_{{nl}}(r),Y_{{lm}}(theta , phi )

其中l=n, n−2, …, lmin{displaystyle l=n, n-2, ldots , l_{mathrm {min} }}l=n, n-2, ldots , l_{{mathrm  {min}}}。假若n{displaystyle n}n是偶數,設定lmin=0{displaystyle l_{mathrm {min} }=0}l_{{mathrm  {min}}}=0;否則,設定lmin=1{displaystyle l_{mathrm {min} }=1}l_{{mathrm  {min}}}=1



導引


在這導引裏,徑向方程式會被轉換為广义拉盖尔微分方程式。這方程式的解是广义拉盖尔多项式。再將广义拉盖尔多项式歸一化以後,就是所要的答案。


首先,將徑向坐標無因次化,設定變數y=γr{displaystyle y={sqrt {gamma }}r}y={sqrt  {gamma }}r;其中,γμω{displaystyle gamma equiv {frac {mu omega }{hbar }}}gamma equiv {frac  {mu omega }{hbar }}。則方程式(5)變為



[d2dy2−l(l+1)y2−y2+2n−3]v(y)=0{displaystyle left[{d^{2} over dy^{2}}-{l(l+1) over y^{2}}-y^{2}+2n-3right]v(y)=0}left[{d^{2} over dy^{2}}-{l(l+1) over y^{2}}-y^{2}+2n-3right]v(y)=0(6)

其中,v(y)=u(y/γ){displaystyle v(y)=uleft(y/{sqrt {gamma }}right)}v(y)=uleft(y/{sqrt  {gamma }}right)是新的函數。


y{displaystyle y}y接近0時,方程式(6)最顯著的項目是



[d2dy2−l(l+1)y2]v(y)=0{displaystyle left[{d^{2} over dy^{2}}-{l(l+1) over y^{2}}right]v(y)=0}{displaystyle left[{d^{2} over dy^{2}}-{l(l+1) over y^{2}}right]v(y)=0}

所以,v(y){displaystyle v(y)}v(y)yl+1{displaystyle y^{l+1}}y^{{l+1}}成正比。


又當y{displaystyle y}y無窮遠時,方程式(6)最顯著的項目是



[d2dy2−y2]v(y)=0{displaystyle left[{d^{2} over dy^{2}}-y^{2}right]v(y)=0}left[{d^{2} over dy^{2}}-y^{2}right]v(y)=0

因此,v(y){displaystyle v(y)}v(y)e−y2/2{displaystyle e^{-y^{2}/2}}e^{{-y^{2}/2}}成正比。


為了除去v(y){displaystyle v(y)}v(y)在原點與無窮遠的極限性態,達到孤立解答函數的形式的目的,必須使用v(y){displaystyle v(y)}v(y)的替換方程式:



v(y)=yl+1e−y2/2f(y){displaystyle v(y)=y^{l+1}e^{-y^{2}/2}f(y)}v(y)=y^{{l+1}}e^{{-y^{2}/2}}f(y)

經過一番運算,這個替換將微分方程式(6)轉換為



[d2dy2+2(l+1y−y)ddy+2n−2l]f(y)=0{displaystyle left[{d^{2} over dy^{2}}+2left({frac {l+1}{y}}-yright){frac {d}{dy}}+2n-2lright]f(y)=0}left[{d^{2} over dy^{2}}+2left({frac  {l+1}{y}}-yright){frac  {d}{dy}}+2n-2lright]f(y)=0(7)


轉換為广义拉盖尔方程式

設定變數x=y2{displaystyle x=y^{2}}x=y^{2},則微分算子為




ddy=dxdyddx=2yddx=2xddx{displaystyle {frac {d}{dy}}={frac {dx}{dy}}{frac {d}{dx}}=2y{frac {d}{dx}}=2{sqrt {x}}{frac {d}{dx}}}{frac  {d}{dy}}={frac  {dx}{dy}}{frac  {d}{dx}}=2y{frac  {d}{dx}}=2{sqrt  {x}}{frac  {d}{dx}}


d2dy2=ddy(2yddx)=4xd2dx2+2ddx{displaystyle {frac {d^{2}}{dy^{2}}}={frac {d}{dy}}left(2y{frac {d}{dx}}right)=4x{frac {d^{2}}{dx^{2}}}+2{frac {d}{dx}}}{frac  {d^{2}}{dy^{2}}}={frac  {d}{dy}}left(2y{frac  {d}{dx}}right)=4x{frac  {d^{2}}{dx^{2}}}+2{frac  {d}{dx}}


代入方程式(7),就可得到广义拉盖尔方程式:



xd2gdx2+((l+12)+1−x)dgdx+12(n−l)g(x)=0{displaystyle x{frac {d^{2}g}{dx^{2}}}+{Big (}(l+{tfrac {1}{2}})+1-x{Big )}{frac {dg}{dx}}+{tfrac {1}{2}}(n-l)g(x)=0}{displaystyle x{frac {d^{2}g}{dx^{2}}}+{Big (}(l+{tfrac {1}{2}})+1-x{Big )}{frac {dg}{dx}}+{tfrac {1}{2}}(n-l)g(x)=0}

其中,函數g(x)≡f(x){displaystyle g(x)equiv f({sqrt {x}})}{displaystyle g(x)equiv f({sqrt {x}})}


假若,k≡(n−l)/2{displaystyle kequiv (n-l)/2}kequiv (n-l)/2是一個非負整數,則广义拉盖尔方程式的解答是广义拉盖尔多项式:



g(x)=Lk(l+12)(x){displaystyle g(x)=L_{k}^{(l+{frac {1}{2}})}(x)}g(x)=L_{k}^{{(l+{frac  {1}{2}})}}(x)

因為k{displaystyle k}k是非負整數,要求




  1. n≥l{displaystyle ngeq l}ngeq l


  2. n{displaystyle n}nl{displaystyle l}l同時為奇數或同時為偶數。這證明了前面所述l{displaystyle l}l必須遵守的條件。



波函數歸一化

回憶到u(r)=rR(r){displaystyle u(r)=rR(r)}u(r)=rR(r),徑向函數可以表達為



Rnl(r)=Nnlrle−12γr2L12(n−l)(l+12)(γr2){displaystyle R_{nl}(r)=N_{nl},r^{l},e^{-{frac {1}{2}}gamma r^{2}};L_{{frac {1}{2}}(n-l)}^{(l+{frac {1}{2}})}(gamma r^{2})}R_{{nl}}(r)=N_{{nl}},r^{{l}},e^{{-{frac  {1}{2}}gamma r^{2}}};L_{{{frac  {1}{2}}(n-l)}}^{{(l+{frac  {1}{2}})}}(gamma r^{2})

其中,Nnl{displaystyle N_{nl}}N_{{nl}}是歸一常數。


Rnl(r){displaystyle R_{nl}(r)}R_{{nl}}(r)的歸一條件是



0∞r2|Rnl(r)|2dr=1{displaystyle int _{0}^{infty }r^{2}|R_{nl}(r)|^{2},dr=1}int _{0}^{infty }r^{2}|R_{{nl}}(r)|^{2},dr=1

設定q=γr2{displaystyle q=gamma r^{2}}q=gamma r^{2}。將Rnl{displaystyle R_{nl}}R_{{nl}}q{displaystyle q}q代入積分方程式:



Nnl22γl+32∫0∞ql+12e−q[L12(n−l)(l+12)(q)]2dq=1{displaystyle {frac {N_{nl}^{2}}{2gamma ^{l+{3 over 2}}}}int _{0}^{infty }q^{l+{1 over 2}}e^{-q}left[L_{{frac {1}{2}}(n-l)}^{(l+{frac {1}{2}})}(q)right]^{2},dq=1}{frac  {N_{{nl}}^{2}}{2gamma ^{{l+{3 over 2}}}}}int _{0}^{infty }q^{{l+{1 over 2}}}e^{{-q}}left[L_{{{frac  {1}{2}}(n-l)}}^{{(l+{frac  {1}{2}})}}(q)right]^{2},dq=1

應用广义拉盖尔多项式的正交歸一性,這方程式簡化為



Nnl22γl+32⋅Γ[12(n+l+1)+1][12(n−l)]!=1{displaystyle {frac {N_{nl}^{2}}{2gamma ^{l+{3 over 2}}}}cdot {frac {Gamma [{frac {1}{2}}(n+l+1)+1]}{[{frac {1}{2}}(n-l)]!}}=1}{frac  {N_{{nl}}^{2}}{2gamma ^{{l+{3 over 2}}}}}cdot {frac  {Gamma [{frac  {1}{2}}(n+l+1)+1]}{[{frac  {1}{2}}(n-l)]!}}=1

因此,歸一常數可以表達為



Nnl=2γl+32(n−l2)!Γ(n+l2+32){displaystyle N_{nl}={sqrt {frac {2,gamma ^{l+{3 over 2}},({frac {n-l}{2}})!}{Gamma ({frac {n+l}{2}}+{frac {3}{2}})}}}}N_{{nl}}={sqrt  {{frac  {2,gamma ^{{l+{3 over 2}}},({frac  {n-l}{2}})!}{Gamma ({frac  {n+l}{2}}+{frac  {3}{2}})}}}}

應用伽瑪函數的數學特性,同時注意n{displaystyle n}nl{displaystyle l}l的奇偶性相同,可以導引出其它形式的歸一常數。伽瑪函數變為



Γ[12+(n+l2+1)]=π(n+l+1)!!2n+l2+1=π(n+l+1)!2n+l+1[12(n+l)]!{displaystyle Gamma left[{1 over 2}+left({frac {n+l}{2}}+1right)right]={frac {{sqrt {pi }}(n+l+1)!!}{2^{{frac {n+l}{2}}+1}}}={frac {{sqrt {pi }}(n+l+1)!}{2^{n+l+1}[{frac {1}{2}}(n+l)]!}}}Gamma left[{1 over 2}+left({frac  {n+l}{2}}+1right)right]={frac  {{sqrt  {pi }}(n+l+1)!!}{2^{{{frac  {n+l}{2}}+1}}}}={frac  {{sqrt  {pi }}(n+l+1)!}{2^{{n+l+1}}[{frac  {1}{2}}(n+l)]!}}

在這裏用到了雙階乘 (double factorial)的定義。


所以,歸一常數等於



Nnl=[2n+l+2γl+32[12(n−l)]![12(n+l)]!π12(n+l+1)!]12{displaystyle N_{nl}=left[{frac {2^{n+l+2},gamma ^{l+{3 over 2}},[{1 over 2}(n-l)]!;[{1 over 2}(n+l)]!}{;pi ^{1 over 2}(n+l+1)!}}right]^{1 over 2}}N_{{nl}}=left[{frac  {2^{{n+l+2}},gamma ^{{l+{3 over 2}}},[{1 over 2}(n-l)]!;[{1 over 2}(n+l)]!}{;pi ^{{1 over 2}}(n+l+1)!}}right]^{{1 over 2}}


類氫原子



類氫原子只含有一個原子核與一個電子,是個簡單的二體系統。兩個物體之間,互相作用的位勢遵守庫侖定律:



V(r)=−14πϵ0Ze2r{displaystyle V(r)=-{frac {1}{4pi epsilon _{0}}}{frac {Ze^{2}}{r}}}V(r)=-{frac  {1}{4pi epsilon _{0}}}{frac  {Ze^{2}}{r}}

其中,ϵ0{displaystyle epsilon _{0}}epsilon _{0}是真空電容率,Z{displaystyle Z}Z是原子序,e{displaystyle e}e是單位電荷量,r{displaystyle r}r是電子離原子核的徑向距離。


將位勢代入方程式(1),



{−22μr2ddr(r2ddr)+ℏ2l(l+1)2μr2−14πϵ0Ze2r}R(r)=ER(r){displaystyle left{-{hbar ^{2} over 2mu r^{2}}{d over dr}left(r^{2}{d over dr}right)+{hbar ^{2}l(l+1) over 2mu r^{2}}-{frac {1}{4pi epsilon _{0}}}{frac {Ze^{2}}{r}}right}R(r)=ER(r)}left{-{hbar ^{2} over 2mu r^{2}}{d over dr}left(r^{2}{d over dr}right)+{hbar ^{2}l(l+1) over 2mu r^{2}}-{frac  {1}{4pi epsilon _{0}}}{frac  {Ze^{2}}{r}}right}R(r)=ER(r)

這方程式的解答是



Rnl(r)=(2Znaμ)3(n−l−1)!2n[(n+l)!]3e−Zr/naμ(2Zrnaμ)lLn−l−12l+1(2Zrnaμ){displaystyle R_{nl}(r)={sqrt {{left({frac {2Z}{na_{mu }}}right)}^{3}{frac {(n-l-1)!}{2n[(n+l)!]^{3}}}}}e^{-Zr/{na_{mu }}}left({frac {2Zr}{na_{mu }}}right)^{l}L_{n-l-1}^{2l+1}left({frac {2Zr}{na_{mu }}}right)}R_{{nl}}(r)={sqrt  {{left({frac  {2Z}{na_{{mu }}}}right)}^{3}{frac  {(n-l-1)!}{2n[(n+l)!]^{3}}}}}e^{{-Zr/{na_{{mu }}}}}left({frac  {2Zr}{na_{{mu }}}}right)^{{l}}L_{{n-l-1}}^{{2l+1}}left({frac  {2Zr}{na_{{mu }}}}right)

其中,=4πε0ℏe2{displaystyle a_{mu }={{4pi varepsilon _{0}hbar ^{2}} over {mu e^{2}}}}a_{mu }={{4pi varepsilon _{0}hbar ^{2}} over {mu e^{2}}}{displaystyle a_{mu }}a_{mu }近似於波耳半徑a0{displaystyle a_{0}}a_{0}。假若,原子核的質量是無限大的,則=a0{displaystyle a_{mu }=a_{0}}a_{mu }=a_{0},並且,約化質量等於電子的質量,μ=me{displaystyle mu =m_{e}}mu =m_{e}Ln−l−12l+1{displaystyle L_{n-l-1}^{2l+1}}L_{{n-l-1}}^{{2l+1}}是广义拉盖尔多项式,定義為[1]



Lij(x)=(−1)j djdxjLi+j(x){displaystyle L_{i}^{j}(x)=(-1)^{j} {frac {d^{j}}{dx^{j}}}L_{i+j}(x)}L_{i}^{j}(x)=(-1)^{j} {frac {d^{j}}{dx^{j}}}L_{i+j}(x)

其中,Li+j(x){displaystyle L_{i+j}(x)}L_{{i+j}}(x)是拉盖尔多项式,可用羅德里格公式表示為



Li(x)=exi! didxi(xie−x){displaystyle L_{i}(x)={frac {e^{x}}{i!}} {frac {d^{i}}{dx^{i}}}(x^{i}e^{-x})}L_{i}(x)={frac {e^{x}}{i!}} {frac {d^{i}}{dx^{i}}}(x^{i}e^{-x})

為了滿足Rnl(r){displaystyle R_{nl}(r)}R_{{nl}}(r)的邊界條件,n{displaystyle n}n必須是正值整數,能量也離散為能級En=−(Z2μe432π02ℏ2)1n2=−13.6Z2n2 (eV){displaystyle E_{n}=-left({frac {Z^{2}mu e^{4}}{32pi ^{2}epsilon _{0}^{2}hbar ^{2}}}right){frac {1}{n^{2}}}={frac {-13.6Z^{2}}{n^{2}}} (eV)}E_{{n}}=-left({frac  {Z^{2}mu e^{4}}{32pi ^{2}epsilon _{0}^{2}hbar ^{2}}}right){frac  {1}{n^{2}}}={frac  {-13.6Z^{2}}{n^{2}}} (eV)。隨著量子數的不同,函數Rnl(r){displaystyle R_{nl}(r)}R_{{nl}}(r)Ylm{displaystyle Y_{lm}}Y_{lm}都會有對應的改變。為了要結束广义拉盖尔多项式的遞迴關係,必須要求l<n{displaystyle l<n}l<n


知道徑向函數Rnl(r){displaystyle R_{nl}(r)}R_{{nl}}(r)與球諧函數Ylm{displaystyle Y_{lm}}Y_{lm}的形式,就可以寫出整個類氫原子量子態的波函數,也就是薛丁格方程式的整個解答:



ψnlm=Rnl(r)Ylm(θ){displaystyle psi _{nlm}=R_{nl}(r),Y_{lm}(theta ,phi )}psi _{nlm}=R_{nl}(r),Y_{lm}(theta ,phi )


導引


為了要簡化薛丁格方程式,設定能量與長度的原子單位 (atomic unit)




Eh=me(e24πε0ℏ)2{displaystyle E_{textrm {h}}=m_{textrm {e}}left({frac {e^{2}}{4pi varepsilon _{0}hbar }}right)^{2}}E_{{textrm  {h}}}=m_{{textrm  {e}}}left({frac  {e^{2}}{4pi varepsilon _{0}hbar }}right)^{2}


a0=4πε0ℏ2mee2{displaystyle a_{0}={{4pi varepsilon _{0}hbar ^{2}} over {m_{textrm {e}}e^{2}}}}a_{{0}}={{4pi varepsilon _{0}hbar ^{2}} over {m_{{textrm  {e}}}e^{2}}}


將變數y=Zr/a0{displaystyle y=Zr/a_{0}}y=Zr/a_{0}W=E/(Z2Eh){displaystyle W=E/(Z^{2}E_{textrm {h}})}W=E/(Z^{2}E_{{textrm  {h}}})代入徑向薛丁格方程式(2):



[−12d2dy2+12l(l+1)y2−1y]ul=Wul{displaystyle left[-{frac {1}{2}}{frac {d^{2}}{dy^{2}}}+{frac {1}{2}}{frac {l(l+1)}{y^{2}}}-{frac {1}{y}}right]u_{l}=Wu_{l}}left[-{frac  {1}{2}}{frac  {d^{2}}{dy^{2}}}+{frac  {1}{2}}{frac  {l(l+1)}{y^{2}}}-{frac  {1}{y}}right]u_{l}=Wu_{l}(8)

這方程式有兩類解答:




  1. W<0{displaystyle W<0}W<0:量子態是束縛態,其本徵函數是平方可積函數。量子化的W{displaystyle W}W造成了離散的能量譜。


  2. W≥0{displaystyle Wgeq 0}Wgeq 0:量子態是散射態,其本徵函數不是平方可積函數。


這條目只講述第(1)類解答。設定正實數α2−2W{displaystyle alpha equiv 2{sqrt {-2W}}}alpha equiv 2{sqrt  {-2W}}x≡αy{displaystyle xequiv alpha y}xequiv alpha y。代入方程式(8):



[d2dx2−l(l+1)x2+2αx−14]ul=0{displaystyle left[{frac {d^{2}}{dx^{2}}}-{frac {l(l+1)}{x^{2}}}+{frac {2}{alpha x}}-{frac {1}{4}}right]u_{l}=0}left[{frac  {d^{2}}{dx^{2}}}-{frac  {l(l+1)}{x^{2}}}+{frac  {2}{alpha x}}-{frac  {1}{4}}right]u_{l}=0(9)

x{displaystyle x}x接近0時,方程式(9)最顯著的項目是



[d2dx2−l(l+1)x2]ul=0{displaystyle left[{frac {d^{2}}{dx^{2}}}-{frac {l(l+1)}{x^{2}}}right]u_{l}=0}left[{frac  {d^{2}}{dx^{2}}}-{frac  {l(l+1)}{x^{2}}}right]u_{l}=0

所以,ul(x){displaystyle u_{l}(x)}u_{l}(x)xl+1{displaystyle x^{l+1}}x^{{l+1}}成正比。


又當x{displaystyle x}x無窮遠時,方程式(9)最顯著的項目是



[d2dx2−14]ul=0{displaystyle left[{frac {d^{2}}{dx^{2}}}-{frac {1}{4}}right]u_{l}=0}left[{frac  {d^{2}}{dx^{2}}}-{frac  {1}{4}}right]u_{l}=0

因此,ul(x){displaystyle u_{l}(x)}u_{l}(x)e−x/2{displaystyle e^{-x/2}}e^{{-x/2}}成正比。


為了除去ul(x){displaystyle u_{l}(x)}u_{l}(x)在原點與無窮遠的極限性態,達到孤立解答函數的形式的目的,必須使用ul(x){displaystyle u_{l}(x)}u_{l}(x)的替換方程式:



ul(x)=xl+1e−x/2fl(x){displaystyle u_{l}(x)=x^{l+1}e^{-x/2}f_{l}(x)}u_{l}(x)=x^{{l+1}}e^{{-x/2}}f_{l}(x)

經過一番運算,得到fl(x){displaystyle f_{l}(x)}f_{l}(x)的方程式:



[xd2dx2+(2l+2−x)ddx+(νl−1)]fl(x)=0{displaystyle left[x{frac {d^{2}}{dx^{2}}}+(2l+2-x){frac {d}{dx}}+(nu -l-1)right]f_{l}(x)=0}left[x{frac  {d^{2}}{dx^{2}}}+(2l+2-x){frac  {d}{dx}}+(nu -l-1)right]f_{l}(x)=0

其中,ν=(−2W)−12{displaystyle nu =(-2W)^{-{frac {1}{2}}}}nu =(-2W)^{{-{frac  {1}{2}}}}


假若,νl−1{displaystyle nu -l-1}nu -l-1是個非負整數k{displaystyle k}k ,則這方程式的解答是广义拉盖尔多项式



Lk(2l+1)(x),k=0,1,…{displaystyle L_{k}^{(2l+1)}(x),qquad k=0,1,ldots }L_{{k}}^{{(2l+1)}}(x),qquad k=0,1,ldots

採用Abramowitz and Stegun的慣例[1]。無因次的能量是



W=−12n2{displaystyle W=-{frac {1}{2n^{2}}}}W=-{frac  {1}{2n^{2}}}

其中,主量子數n≡k+l+1{displaystyle nequiv k+l+1}nequiv k+l+1滿足n≥l+1{displaystyle ngeq l+1}ngeq l+1,或l≤n−1{displaystyle lleq n-1}lleq n-1


由於α=2/n{displaystyle alpha =2/n}alpha =2/n,徑向波函數是



Rnl(r)=(2Zna0)3⋅(n−l−1)!2n[(n+l)!]3e−Zrna0(2Zrna0)lLn−l−12l+1(2Zrna0){displaystyle R_{nl}(r)={sqrt {left({frac {2Z}{na_{0}}}right)^{3}cdot {frac {(n-l-1)!}{2n[(n+l)!]^{3}}}}};e^{-{textstyle {frac {Zr}{na_{0}}}}}left({frac {2Zr}{na_{0}}}right)^{l};L_{n-l-1}^{2l+1}left({frac {2Zr}{na_{0}}}right)}R_{{nl}}(r)={sqrt  {left({frac  {2Z}{na_{0}}}right)^{3}cdot {frac  {(n-l-1)!}{2n[(n+l)!]^{3}}}}};e^{{-{textstyle {frac  {Zr}{na_{0}}}}}}left({frac  {2Zr}{na_{0}}}right)^{{l}};L_{{n-l-1}}^{{2l+1}}left({frac  {2Zr}{na_{0}}}right)

能量是



E=−Z22n2Eh=−Z22n2me(e24πε0ℏ)2,n=1,2,…{displaystyle E=-{frac {Z^{2}}{2n^{2}}}E_{textrm {h}}=-{frac {Z^{2}}{2n^{2}}}m_{textrm {e}}left({frac {e^{2}}{4pi varepsilon _{0}hbar }}right)^{2},qquad n=1,2,ldots }E=-{frac  {Z^{2}}{2n^{2}}}E_{{textrm  {h}}}=-{frac  {Z^{2}}{2n^{2}}}m_{{textrm  {e}}}left({frac  {e^{2}}{4pi varepsilon _{0}hbar }}right)^{2},qquad n=1,2,ldots


參閱



  • 自由粒子

  • 無限深方形阱

  • 有限深方形阱

  • 有限位勢壘

  • Delta位勢阱

  • Delta位勢壘

  • 連心力



參考文獻




  1. ^ 1.01.1 Abramowitz, Milton; Stegun, Irene A. (编), Chapter 22, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover, 1965, ISBN 0-486-61272-4 



  • Griffiths, David J. Introduction to Quantum Mechanics (2nd ed.). Prentice Hall. 2004. ISBN 0-13-111892-7. 



Popular posts from this blog

Mount Tamalpais

Indian Forest Service

Y