Iwasawa theory
In number theory, Iwasawa theory is the study of objects of arithmetic interest over infinite towers of number fields. It began as a Galois module theory of ideal class groups, initiated by Kenkichi Iwasawa (1959) (岩澤 健吉), as part of the theory of cyclotomic fields. In the early 1970s, Barry Mazur considered generalizations of Iwasawa theory to abelian varieties. More recently (early 1990s), Ralph Greenberg has proposed an Iwasawa theory for motives.
Contents
1 Formulation
2 Example
3 Connections with p-adic analysis
4 Generalizations
5 See also
6 References
7 Further reading
8 External links
Formulation
Iwasawa worked with so-called Zp{displaystyle mathbb {Z} _{p}}-extensions: infinite extensions of a number field F{displaystyle F} with Galois group Γ{displaystyle Gamma } isomorphic to the additive group of p-adic integers for some prime p. Every closed subgroup of Γ{displaystyle Gamma } is of the form Γpn{displaystyle Gamma ^{p^{n}}}, so by Galois theory, a Zp{displaystyle mathbb {Z} _{p}}-extension F∞/F{displaystyle F_{infty }/F} is the same thing as a tower of fields F=F0⊂F1⊂F2⊂…⊂F∞{displaystyle F=F_{0}subset F_{1}subset F_{2}subset ldots subset F_{infty }} such that Gal(Fn/F)≅Z/pnZ{displaystyle {textrm {Gal}}(F_{n}/F)cong mathbb {Z} /p^{n}mathbb {Z} }. Iwasawa studied classical Galois modules over Fn{displaystyle F_{n}} by asking questions about the structure of modules over F∞{displaystyle F_{infty }}.
More generally, Iwasawa theory asks questions about the structure of Galois modules over extensions with Galois group a p-adic Lie group.
Example
Let p{displaystyle p} be a prime number and let K=Q(μp){displaystyle K=mathbb {Q} (mu _{p})} be the field generated over Q{displaystyle mathbb {Q} } by the p{displaystyle p}th roots of unity. Iwasawa considered the following tower of number fields:
- K=K0⊂K1⊂⋯⊂K∞,{displaystyle K=K_{0}subset K_{1}subset cdots subset K_{infty },}
where Kn{displaystyle K_{n}} is the field generated by adjoining to K{displaystyle K} the pn+1st roots of unity and K∞=⋃Kn{displaystyle K_{infty }=bigcup K_{n}}. The fact that Gal(Kn/K)≃Z/pnZ{displaystyle {textrm {Gal}}(K_{n}/K)simeq mathbb {Z} /p^{n}mathbb {Z} } implies, by infinite Galois theory, that Gal(K∞/K){displaystyle {textrm {Gal}}(K_{infty }/K)} is isomorphic to Zp{displaystyle mathbb {Z} _{p}}. In order to get an interesting Galois module here, Iwasawa took the ideal class group of Kn{displaystyle K_{n}}, and let In{displaystyle I_{n}} be its p-torsion part. There are norm maps Im→In{displaystyle I_{m}rightarrow I_{n}} whenever m>n{displaystyle m>n}, and this gives us the data of an inverse system. If we set I=lim←In{displaystyle I=varprojlim I_{n}}, then it is not hard to see from the inverse limit construction that I{displaystyle I} is a module over Zp{displaystyle mathbb {Z} _{p}}. In fact, I{displaystyle I} is a module over the Iwasawa algebra Λ=Zp[[Γ]]{displaystyle Lambda =mathbb {Z} _{p}[[Gamma ]]}. This is a 2-dimensional, regular local ring, and this makes it possible to describe modules over it. From this description it is possible to recover information about the p-part of the class group of K{displaystyle K}.
The motivation here is that the p-torsion in the ideal class group of K{displaystyle K} had already been identified by Kummer as the main obstruction to the direct proof of Fermat's Last Theorem.
Connections with p-adic analysis
From this beginning in the 1950s, a substantial theory has been built up. A fundamental connection was noticed between the module theory, and the p-adic L-functions that were defined in the 1960s by Kubota and Leopoldt. The latter begin from the Bernoulli numbers, and use interpolation to define p-adic analogues of the Dirichlet L-functions. It became clear that the theory had prospects of moving ahead finally from Kummer's century-old results on regular primes.
Iwasawa formulated the main conjecture of Iwasawa theory as an assertion that two methods of defining p-adic L-functions (by module theory, by interpolation) should coincide, as far as that was well-defined. This was proved by Mazur & Wiles (1984) for Q, and for all totally real number fields by Wiles (1990). These proofs were modeled upon Ken Ribet's proof of the converse to Herbrand's theorem (the so-called Herbrand–Ribet theorem).
Karl Rubin found a more elementary proof of the Mazur-Wiles theorem by using Kolyvagin's Euler systems, described in Lang (1990) and Washington (1997), and later proved other generalizations of the main conjecture for imaginary quadratic fields.
Generalizations
The Galois group of the infinite tower, the starting field, and the sort of arithmetic module studied can all be varied. In each case, there is a main conjecture linking the tower to a p-adic L-function.
In 2002, Chris Skinner and Eric Urban claimed a proof of a main conjecture for GL(2). In 2010, they posted a preprint (Skinner & Urban 2010).
See also
- Ferrero–Washington theorem
- Tate module of a number field
References
Coates, J.; Sujatha, R. (2006), Cyclotomic Fields and Zeta Values, Springer Monographs in Mathematics, Springer-Verlag, ISBN 3-540-33068-2, Zbl 1100.11002.mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
Greenberg, Ralph (2001), "Iwasawa theory---past and present", in Miyake, Katsuya, Class field theory---its centenary and prospect (Tokyo, 1998), Adv. Stud. Pure Math., 30, Tokyo: Math. Soc. Japan, pp. 335–385, ISBN 978-4-931469-11-2, MR 1846466, Zbl 0998.11054
Iwasawa, Kenkichi (1959), "On Γ-extensions of algebraic number fields", Bulletin of the American Mathematical Society, 65 (4): 183–226, doi:10.1090/S0002-9904-1959-10317-7, ISSN 0002-9904, MR 0124316, Zbl 0089.02402
Kato, Kazuya (2007), "Iwasawa theory and generalizations", in Sanz-Solé, Marta; Soria, Javier; Varona, Juan Luis; et al., International Congress of Mathematicians. Vol. I (PDF), Eur. Math. Soc., Zürich, pp. 335–357, doi:10.4171/022-1/14, ISBN 978-3-03719-022-7, MR 2334196
Lang, Serge (1990), Cyclotomic fields I and II, Graduate Texts in Mathematics, 121, With an appendix by Karl Rubin (Combined 2nd ed.), Berlin, New York: Springer-Verlag, ISBN 978-0-387-96671-7, Zbl 0704.11038
Mazur, Barry; Wiles, Andrew (1984), "Class fields of abelian extensions of Q", Inventiones Mathematicae, 76 (2): 179–330, doi:10.1007/BF01388599, ISSN 0020-9910, MR 0742853, Zbl 0545.12005
Neukirch, Jürgen; Schmidt, Alexander; Wingberg, Kay (2008), Cohomology of Number Fields, Grundlehren der Mathematischen Wissenschaften, 323 (Second ed.), Berlin: Springer-Verlag, doi:10.1007/978-3-540-37889-1, ISBN 978-3-540-37888-4, MR 2392026, Zbl 1136.11001
Rubin, Karl (1991), "The 'main conjectures' of Iwasawa theory for imaginary quadratic fields", Inventiones Mathematicae, 103 (1): 25–68, doi:10.1007/BF01239508, ISSN 0020-9910, Zbl 0737.11030
Skinner, Chris; Urban, Éric (2010), The Iwasawa main conjectures for GL2 (PDF), p. 219
Washington, Lawrence C. (1997), Introduction to cyclotomic fields, Graduate Texts in Mathematics, 83 (2nd ed.), Berlin, New York: Springer-Verlag, ISBN 978-0-387-94762-4
Andrew Wiles (1990), "The Iwasawa Conjecture for Totally Real Fields", Annals of Mathematics, 131 (3): 493–540, doi:10.2307/1971468, JSTOR 1971468, Zbl 0719.11071.
Further reading
de Shalit, Ehud (1987), Iwasawa theory of elliptic curves with complex multiplication. p-adic L functions, Perspectives in Mathematics, 3, Boston etc.: Academic Press, ISBN 0-12-210255-X, Zbl 0674.12004
External links
Hazewinkel, Michiel, ed. (2001) [1994], "Iwasawa theory", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4